
Name: ____________________ Date: ____________________

CS270 Homework 5 (HW5)

Due Tuesday, April 24 (start of class)
Homework and programming assignments are to be done individually.

Goals

To understand all aspects of C pointers:

• Basic pointer manipulation
• C pointers and functions
• C pointers and arrays
• C pointers and strings
• C pointers and structs
• Static memory allocation
• Dynamic memory allocation
• C pointers and swapping
• C pointers and efficiency
• C pointers to pointers

Instructions

You may need to write C programs for this assignment, but these do not need to be handed in. A hard
copy of your written solution is to be turned in before class on the due date. Try to figure out the
output of the programs before running any code, and only then compare your answer after running the
program. This will maximize your learning, and ensure greater chance of success if similar questions
appear on the final exam. Each question is worth 10 points.

Late Policy

All homework assignments should be handed in at the beginning of class on the due date. Late
assignments will be accepted up to 48 hours past the due date, with a penalty of 10% per 24-hour
period. Late submissions should be made via email (.txt or .pdf files only), or by delivering the paper
copy to Sanjay’s office or under the door of room 340 CSB.

Extra Credit

This assignment, which is nominally worth 3% of your final grade, will carry double the weight, thus
allowing you to earn extra credit, for no extra work.

The Assignment

Question 1 (10 points): Basic C Pointers

int i;
float x;
int *pInteger = &i;
float *pFloat = &x;

i = 1234;
*pInteger = 5678;
x = 0.5678f;
*pFloat = 0.1234f;

printf("i = %d, %d, %d\n", i, *(&i), *pInteger);
printf("x = %f, %f, %f\n", x, *(&x), *pFloat);

a) What is the output of the code shown above?

b) Is there any difference between the address of a variable, and the value of a pointer to that variable?

c) What would you expect the difference in the values of pInteger and pFloat to be? _________ bytes

Question 2 (10 points): C Pointers and Functions

void function(int i, int *j, float x, float *y)
{
 i = 5544;
 *j *= 100;
 x = 0.1234f;
 *y /= 10.0;

 printf("%d, %d, %f, %f\n", i, *j, x, *y);
}

int i = 1122;
int j = 2233;
float x = 5.678f;
float y = 2.468f;

printf("%d, %d, %f, %f\n", i, j, x, y);
function(i, &j, x, &y);
printf("%d, %d, %f, %f\n", i, j, x, y);

a) What is the output of the code shown above?

b) Which parameters can be changed by the function? Which cannot?

c) The function appears to modify the parameters i and x, but these values never make it out of the
function. Why not?

Question 3 (10 points): C Pointers and Arrays

int iArray[4] = {11, 22, 33, 44};
int *pInteger = &iArray[0];
printf("%d %d %d %d\n", iArray[0], iArray[1], iArray[2], iArray[3]);

iArray[0] *= 2;
*(pInteger+1) *= 3;
pInteger[2] *= 4;
*(iArray+3) *= 5;

printf("%d %d %d %d\n", iArray[0], iArray[1], iArray[2], iArray[3]);

a) What is the output of the code shown above?

b) Are the following identical: pInteger[1], *(pInteger+1), iArray[1] and *(iArray+1)? Why?

Question 4 (10 points): C Pointers and Strings

char *str = "hello";
char str1[6] = {'t','h','e','r','e','\0'};

for (unsigned int i=0; i<strlen(str); ++i)
{
 printf("str[%d] = %c(%c)\n", i, str[i], *(str+i));
}

printf("str = %s\n", str);

for (unsigned int j=0; j<strlen(str1); ++j)
{
 printf("str1[%d] = %c(%c)\n", j, str1[j], *(str1+j));
}

printf("str1 = %s\n", str1);

a) What is the output of the code shown above?

b) Is there a string data type in C? If not, what is used instead?

c) What additional limitation does a string have that a character array does not?

Question 5 (10 points): C Pointers and Structs

typedef struct
{
 int i;
 float f;
} simple;

simple s;
simple *p=&s;

s.i = 1234;
s.f = 0.112233f;
printf("s.i = %d, s.f = %f\n", s.i, s.f);

p->i += 2345;
p->f *= 2.0f;
printf("s.i = %d, s.f = %f\n", s.i, s.f);

a) What is the output of the code shown above?

b) How does the . operator differ from the -> operator with respect to structure access?

c) How many bytes does the struct defined above require on a 32-bit system?

Question 6 (10 points): C Pointers and Static Allocation

int i = 11;
int j = 12;

float x = 0.123f;
float y = 0.234f;

printf ("Values: %d, %d, %f, %f\n", i, j, x, y);
printf ("Addresses: %p, %p, %p, %p\n", &i, &j, &x, &y);

a) What is the output of the code shown above? You must run the code to find out.

b) Are local variables pushed onto the stack in forward (i,j,x,y) or reverse order (y,x,j,i)? Hint: pushing
data onto the stack increases the stack pointer.

Question 7 (10 points): C Pointers and Dynamic Allocation

int array1[4];
int array2[4];

int *array3 = (int *)malloc(sizeof(int) * 4);
int *array4 = (int *)malloc(sizeof(int) * 4);

printf("Addresses: %p, %p, %p, %p\n", array1,array2,array3,array4);

a) What is the output of the code shown above? You must run the code to find out.

b) Why are the addresses of array1/array2 so different from array3/array4. Which memory pool is used
for each allocation?

Question 8 (10 points): C Pointers and Data Swapping

void swap0(int x, int y)
{
 int temp = x;
 x = y;
 y = temp;
 printf("x = %d, y = %d\n", x, y);
}

void swap1(int *x, int *y)
{
 int temp = *x;
 *x = *y;
 *y = temp;
 printf("x = %d, y = %d\n", *x, *y);
}

int i = 1234;
int j = 5678;

printf("i = %d, j = %d\n", i, j);
swap0(i, j);
printf("i = %d, j = %d\n", i, j);
swap1(&i, &j);
printf("i = %d, j = %d\n", i, j);

a) What is the output of the code shown above?

b) Why does swap0 fail to swap the values, even though it seems to have worked locally? Why does
swap 1 work?

Question 9 (10 points): C Pointers and Efficiency

typedef struct
{
 int iArray[32];
 float fArray[32];
} large;

void f1(large l)
{
 printf("sizeof(l) = %d\n", (int)sizeof(l));
}

void f2(large *l)
{
 printf("sizeof(l) = %d\n", (int)sizeof(l));
}

large s;
for (int i=0; i<32; ++i)
{
 s.iArray[i] = i;
 s.fArray[i] = (float) i;
}
f1(s);
f2(&s);

a) What is the output of the code shown above?

b) How many bytes are required on the stack for parameter storage for f1()? f2()? Which is more
efficient and why?

Question 10 (10 points): C Pointers to Pointers

int i = 12345;
int *p = &i;
int **pp = &p;

i = 2345;
printf("i = %d\n", i);

*p = 3467;
printf("i = %d\n", i);

**pp = 4567;
printf("i = %d\n", i);

printf("&i = %p, p = %p, pp = %p, *pp = %p\n", &i, p, pp, *pp);

a) What is the output of the code shown above? You must run the code to find out.

b) Why do &i, p, and *pp all point at the same address?

c) What is pointed at by the “pointer to a pointer” pp?

