
Midterm 2 Review
Chapters 4-16

LC-3

8-2

Topics

• Bit width

• Range of offsets

• Purpose of registers

• Basics of what the instructions do

• 2’s comp

• Basics of interrupts

• Stacks / stack protocol

• Hex to instruction

• Condition codes

• Instruction cycle

• Assembler directives

How many bits are in the IR?

A. 4

B. 3

C. 16

D. 216

E. None of the above

8-4

ISA

You will be allowed to use the one

page instruction summary.

5-5

LC-3 Overview: Instruction Set

Opcodes

• 15 opcodes

• Operate instructions: ADD, AND, NOT

• Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI

• Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP

• some opcodes set/clear condition codes, based on result:

➢N = negative, Z = zero, P = positive (> 0)

Data Types

• 16-bit 2’s complement integer

Addressing Modes

• How is the location of an operand specified?

• non-memory addresses: immediate, register

• memory addresses: PC-relative, indirect, base+offset

5-6

ADD/AND (Immediate)

Note: Immediate field is
sign-extended.

this one means “immediate mode”

Assembly Ex:

Add R3, R3, #1

5-7

Load and Store instructions

Example: LD R1, Label1

R1 is loaded from memory location labelled Label1

Example: LDI R1, Label1

R1 is loaded from address found at location Label1

Example: LDR R1, R4, #1

R1 is loaded from address pointed by R4 with offset 1.

Store instructions use the same addressing modes, except the

register contents are written to a memory location.

5-8

LEA (Immediate)

Assembly Ex:

LEA R1, Lab1

Used to initialize a

pointer.

What instructions would achieve the

same result as the LDI instruction below

A. LEA R2, FAR

LD R2, R2, #0

B. LEA R2, FAR

LDR R2, R2, #0

C. LD R2, FAR

LDR R2, R2, #0

D. LD R2, MAIN

LDR R2, R2, #2

E. C and D

.ORIG x3000

MAIN ADD R2, R2, #3

LDI R2, FAR

FAR .FILL xFFFC

5-10

Condition Codes

LC-3 has three condition code registers:

N -- negative

Z -- zero

P -- positive (greater than zero)

• Set by any instruction that writes a value to a register

(ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times

• Based on the last instruction that altered a register

Assembly Ex: BRz, Label

What Condition Code is set when the

Branch instruction is reached

A. N

B. Z

C. P

D. Can’t be

determined

.ORIG x3000

Main LD R1,Twelve

LEA R0, Twelve

NOT R1,R1

ADD R1,R1,1

ADD R0,R0,R1

BRnzp Main

Twelve .FILL x000C

7-12

Assembler Directives

Pseudo-operations

• do not refer to operations executed by program

• used by assembler

• look like instruction, but “opcode” starts with dot

Opcode Operand Meaning

.ORIG address starting address of program

.END end of program

.BLKW n allocate n words of storage

.FILL n allocate one word, initialize with

value n

.STRINGZ n-character

string

allocate n+1 locations,

initialize w/characters and null

terminator

9-13

TRAP Instruction

Trap vector

• identifies which system call to invoke

• 8-bit index into table of service routine addresses

➢in LC-3, this table is stored in memory at 0x0000 – 0x00FF

➢8-bit trap vector is zero-extended into 16-bit memory address

Where to go

• lookup starting address from table; place in PC

How to get back

• save address of next instruction (current PC) in R7

9-14

TRAP

NOTE: PC has already been incremented

during instruction fetch stage.

Given the following segments of LC3

memory what will the PC be loaded with

after this instruction has executed?

TRAP x21

A. x0021

B. x0231

C. x32AC

D. xFADC

E. None of the above

location data

x0020 x0420

x0021 x0231

x0022 x046C

x0023 x0326

x0024 x0324

location data

x0323 xFADC

x0324 x32AC

x0325 xAE1F

x0326 x330F

x0327 x98A1

location data

x0230 x2A43

x0231 x32AC

x0232 x5E1F

x0233 x8FB2

x0234 xE8A1

7-16

Trap Codes

LC-3 assembler provides “pseudo-instructions” for

each trap code, so you don’t have to remember them.

Code Equivalent Description

HALT TRAP x25 Halt execution and print message to

console.

IN TRAP x23 Print prompt on console,

read (and echo) one character from keybd.

Character stored in R0[7:0].

OUT TRAP x21 Write one character (in R0[7:0]) to console.

GETC TRAP x20 Read one character from keyboard.

Character stored in R0[7:0].

PUTS TRAP x22 Write null-terminated string to console.

Address of string is in R0.

What is the OUT Trap expecting when it

is called

A. R5 to have the address of a character

B. R0 to have a characters ASCII value

C. R5 to have a characters ASCII value

D. R0 to have the address of a character

E. None of the above

9-18

JSR Instruction

Jumps to a location (like a branch but unconditional),

and saves current PC (addr of next instruction) in R7.

• saving the return address is called “linking”

• target address is PC-relative (PC + Sext(IR[10:0]))

• bit 11 specifies addressing mode

➢if =1, PC-relative: target address = PC + Sext(IR[10:0])

➢if =0, register: target address = contents of register IR[8:6]

9-19

Example: Negate the value in R0

2sComp NOT R0, R0 ; flip bits

ADD R0, R0, #1 ; add one

RET ; return to caller

To call from a program (within 1024 instructions):

; need to compute R4 = R1 - R3

ADD R0, R3, #0 ; copy R3 to R0

JSR 2sComp ; negate

ADD R4, R1, R0 ; add to R1

...

Note: Caller should save R0 if we’ll need it later!

Why do we need the JSRR instruction

A. To save the return address in a specific register

B. To load the PC with a value greater than 256

locations away from the current PC

C. We don’t it is the same as JMP R7

D. To return from an interrupt service routine

E. None of the above

9-21

RET (JMP R7)

How do we transfer control back to

instruction following the TRAP or service/sub routine?

We saved old PC in R7.

• JMP R7 gets us back to the user program at the right spot.

• LC-3 assembly language lets us use RET (return)

in place of “JMP R7”.

Must make sure that service routine does not

change R7, or we won’t know where to return.

8-22

Stack

Instructions are stored in code segment

Global data is stored in data segment

Local variables, including arrays, uses stack

Dynamically allocated memory uses heap

23

Memory Usage

Code

Data

Heap

↓

↑

Stack

◼Code segment is write protected

◼ Initialized and uninitialized globals

◼Stack size is usually limited

◼Stack generally grows from higher to

lower addresses.

23

Basic Push and Pop Code

For our implementation, stack grows downward

(when item added, TOS moves closer to 0)

Push R0

ADD R6, R6, #-1 ; decrement stack ptr

STR R0, R6, #0 ; store data (R0)

Pop R0

LDR R0, R6, #0 ; load data from TOS

ADD R6, R6, #1 ; decrement stack ptr

• Sometimes a Pop only adjusts the SP.

• Arguments pushed onto the stack last to first

What location will the stack pointer point

to after this code executes

A. X4801

B. X4000

C. x47FD

D. x47FF

E. A or D

.ORIG x3000

Start JSR Main

Main LD R6 Stack

LD R3, Start

PUSH R1

ADD R6, R6, #-2

PUSH R3

POP R6

Stack .FILL x4800

14-26

Run-Time Stack

main

Memory

R6

Watt

Memory

R6

main

Memory

main

Before call During call After call

R5

R5

R6

R5

14-27

Activation Record
int NoName(int a, int b)

{

int w, x, y;

.

.

.

return y;

}

Name Type Offset Scope

a
b
w
x
y

int
int
int
int
int

4
5
0
-1
-2

NoName
NoName
NoName
NoName
NoName

y

x

w

dynamic link

return address

return value

a

b

bookkeeping

locals

args

R5

Compiler generated Symbol table.
Offset relative to FP R5

Lower addresses

14-28

Summary of LC-3 Function Call Implementation

1. Caller pushes arguments (last to first).

2. Caller invokes subroutine (JSR).

3. Callee allocates return value, pushes R7 and R5.

4. Callee allocates space for local variables.

5. Callee executes function code.

6. Callee stores result into return value slot.

7. Callee pops local vars, pops R5, pops R7.

8. Callee returns (JMP R7).

9. Caller loads return value and pops arguments.

10. Caller resumes computation…

What is not a benefit of using a stack for

memory management

A. Functions only uses memory when they are active

B. Regions of memory can be marked read only

C. Data related to one function can be accessed by

another function by altering the Frame pointer offset

D. Implementing of recursion is possible

E. None of the above

8-30

Input/Output

8-31

Input from Keyboard

When a character is typed:

• its ASCII code is placed in bits [7:0] of KBDR

(bits [15:8] are always zero)

• the “ready bit” (KBSR[15]) is set to one

• keyboard is disabled -- any typed characters will be ignored

When KBDR is read:

• KBSR[15] is set to zero

• keyboard is enabled

KBSR

KBDR
15 8 7 0

1514 0

keyboard data

ready bit

8-32

Basic Input Routine

new

char?

read

character

YES

NO

Polling

POLL LDI R0, KBSRPtr

BRzp POLL

LDI R0, KBDRPtr

...

KBSRPtr .FILL xFE00

KBDRPtr .FILL xFE02

8-33

Output to Monitor

When Monitor is ready to display another character:

• the “ready bit” (DSR[15]) is set to one

When data is written to Display Data Register:

• DSR[15] is set to zero

• character in DDR[7:0] is displayed

• any other character data written to DDR is ignored

(while DSR[15] is zero)

DSR

DDR
15 8 7 0

1514 0

output data

ready bit

To implement Memory Mapped IO extra

hardware will be needed in the

A. Processor

B. Memory Controller

C. Register File

D. B and C

E. None of the above

8-35

Interrupt-Driven I/O

External device can:

(1) Force currently executing program to stop;

(2) Have the processor satisfy the device’s needs; and

(3) Resume the stopped program as if nothing happened.

Interrupt is an unscripted subroutine call, triggered by an external

event.

8-36

Interrupt-Driven I/O

To implement an interrupt mechanism, we need:

• A way for the I/O device to signal the CPU that an

interesting event has occurred.

• A way for the CPU to test whether the interrupt signal is set

and whether its priority is higher than the current program.

Generating Signal

• Software sets "interrupt enable" bit in device register.

• When ready bit is set and IE bit is set, interrupt is signaled.

KBSR
1514 0

ready bit
13

interrupt enable bit

interrupt signal

to processor

8-37

Testing for Interrupt Signal

CPU looks at signal between STORE and FETCH phases.

If not set, continues with next instruction.

If set, transfers control to interrupt service routine.

EA

OP

EX

S

F

D

interrupt
signal?

Transfer to

ISR

NO

YES

10-38

Processor State

• Must be saved before servicing an interrupt.

• What state is needed to completely capture the

state of a running process?

Processor Status Register
• Privilege [15], Priority Level [10:8], Condition Codes [2:0]

LC-3: 8 priority levels (PL0-PL7)

Program Counter

• Pointer to next instruction to be executed.

Registers

• All temporary state of the process that’s not stored in memory.

Privilege Priority Condition Code

How does the RTI instruction know if it

needs to switch from the supervisor

stack to the user stack?

A. It checks if the priority level of the PSR it pops off the

supervisor stack is higher than the current priority

level

B. The RTI instruction does not need to switch between

stacks this is the RET instructions responsibility

C. It checks if the privilege level of the PSR it pops off

the supervisor stack is 1

D. None of the above

