
Midterm 2 Review
Chapters 4-16
LC-3

8-2

ISA

You will be allowed to use the one page summary.

5-3

LC-3 Overview: Instruction Set
Opcodes

• 15 opcodes
• Operate instructions: ADD, AND, NOT
• Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI
• Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP
• some opcodes set/clear condition codes, based on result:

ØN = negative, Z = zero, P = positive (> 0)
Data Types

• 16-bit 2’s complement integer
Addressing Modes

• How is the location of an operand specified?
• non-memory addresses: immediate, register
• memory addresses: PC-relative, indirect, base+offset

5-4

ADD/AND (Immediate)

Note: Immediate field is
sign-extended.

this one means “immediate mode”

Assembly Ex:
Add R3, R3, #1

5-5

LD (PC-Relative)
Assembly Ex:
LD R1, Label1

5-6

Load and Store instructions

Example: LD R1, Label1
R1 is loaded from memory location labelled Label1

Example: LDI R1, Label1
R1 is loaded from address found at location Label1

Example: LDR R1, R4, #1
R1 is loaded from address pointed by R4 with offset 1.
Store instructions use the same addressing modes, except the
register contents are written to a memory location.

5-7

ST (PC-Relative)
Assembly Ex:
ST R1, Label2

5-8

LEA (Immediate)

Assembly Ex:
LEA R1, Lab1

Used to initialize a
pointer.

5-9

Condition Codes
LC-3 has three condition code registers:

N -- negative
Z -- zero
P -- positive (greater than zero)

• Set by any instruction that writes a value to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

Exactly one will be set at all times
• Based on the last instruction that altered a register

Assembly Ex: BRz, Label

5-10

Count characters in a “file”: Flow Chart

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char
from keybd

(TRAP x23)

Done?
(R1 ?= EOT)

Load char from file
(R1 = M[R3])

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to
ASCII character

(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)

NO

NO

YES

YES

11

; Get next character from the file
;
GETCHAR ADD R3,R3,#1 ; Increment the pointer

LDR R1,R3,#0 ; R1 gets the next character to
test

BRnzp TEST
;
; Output the count.
;
OUTPUT LD R0,ASCII ; Load the ASCII template

ADD R0,R0,R2 ; Convert binary to ASCII
TRAP x21 ; ASCII code in R0 is displayed
TRAP x25 ; Halt machine

;
; Storage for pointer and ASCII template
;
ASCII .FILL x0030
PTR .FILL x3015

.END

.ORIG x3000
AND R2,R2,#0 ; R2 is counter, initialize to 0
LD R3,PTR ; R3 is pointer to characters
TRAP x23 ; R0 gets character input
LDR R1,R3,#0 ; R1 gets the next character

;
; Test character for end of file
;

TEST ADD R4,R1,#-4 ; Test for EOT
BRz OUTPUT ; If done, prepare the output

;
; Test character for match. If a match, increment count.
;

NOT R1,R1
ADD R1,R1,R0 ; If match, R1 = xFFFF
NOT R1,R1 ; If match, R1 = x0000
BRnp GETCHAR ; no match, do not increment
ADD R2,R2,#1

;

Count characters in a “file”: Code

7-12

Assembler Directives
Pseudo-operations

• do not refer to operations executed by program
• used by assembler
• look like instruction, but “opcode” starts with dot

Opcode Operand Meaning
.ORIG address starting address of program
.END end of program
.BLKW n allocate n words of storage
.FILL n allocate one word, initialize with

value n
.STRINGZ n-character

string
allocate n+1 locations,
initialize w/characters and null
terminator

7-13

Trap Codes
LC-3 assembler provides “pseudo-instructions” for
each trap code, so you don’t have to remember them.

Code Equivalent Description
HALT TRAP x25 Halt execution and print message to

console.
IN TRAP x23 Print prompt on console,

read (and echo) one character from keybd.
Character stored in R0[7:0].

OUT TRAP x21 Write one character (in R0[7:0]) to console.
GETC TRAP x20 Read one character from keyboard.

Character stored in R0[7:0].
PUTS TRAP x22 Write null-terminated string to console.

Address of string is in R0.

Count Characters
Symbol Table:
fill yourself

.ORIG x3000

AND R2, R2, #0 ; init counter

LD R3, PTR ; R3 pointer to chars

GETC ; R0 gets char input

LDR R1, R3, #0 ; R1 gets first char

TEST ADD R4, R1, #-4 ; Test for EOT

BRz OUTPUT ; done?

;Test character for match, if so increment count.

NOT R1, R1

ADD R1, R1, R0 ; If match, R1 = xFFFF

NOT R1, R1 ; If match, R1 = x0000

BRnp GETCHAR ; No match, no increment

ADD R2, R2, #1

; Get next character from file.

GETCHAR ADD R3, R3, #1 ; Point to next cha.

LDR R1, R3, #0 ; R1 gets next char

BRnzp TEST

; Output the count.

OUTPUT LD R0, ASCII ; Load ASCII template

ADD R0, R0, R2 ; Covert binary to ASCII

OUT ; ASCII code is displayed

HALT ; Halt machine
; Storage for pointer and ASCII template
ASCII .FILL x0030
PTR .FILL x4000

.END

14

Symbol Address
TEST x3004
GETCHAR x300B
OUTPUT
ASCII
PTR x3013

7-15

Practice
Using the symbol table constructed earlier,
translate these statements into LC-3 machine language.

Statement Machine Language
LD R3,PTR 0010 011 0 0001 0000

ADD R4,R1,#-4

LDR R1,R3,#0

BRnp GETCHAR 0000 101 0 0000 0001

Symbol ptr: x3013, LD is at x3002
Offset needed: x11- x01

4-16

Memory
2k x m array of stored bits
Address

• unique (k-bit) identifier of location
Contents

• m-bit value stored in location

Basic Operations:
LOAD

• read a value from a memory location
STORE

• write a value to a memory location

•••

0000
0001
0010
0011
0100
0101
0110

1101
1110
1111

00101101

10100010

9-17

TRAP Instruction

Trap vector
• identifies which system call to invoke
• 8-bit index into table of service routine addresses

Øin LC-3, this table is stored in memory at 0x0000 – 0x00FF
Ø8-bit trap vector is zero-extended into 16-bit memory address

Where to go
• lookup starting address from table; place in PC

How to get back
• save address of next instruction (current PC) in R7

9-18

RET (JMP R7)
How do we transfer control back to
instruction following the TRAP?

We saved old PC in R7.
• JMP R7 gets us back to the user program at the right spot.
• LC-3 assembly language lets us use RET (return)

in place of “JMP R7”.

Must make sure that service routine does not
change R7, or we won’t know where to return.

9-19

TRAP Mechanism Operation

1. Lookup starting address.
2. Transfer to service routine.
3. Return (JMP R7).

9-20

TRAP Routines and their Assembler Names

vector symbol routine

x20 GETC read a single character (no echo)

x21 OUT output a character to the monitor

x22 PUTS write a string to the console

x23 IN print prompt to console,
read and echo character from keyboard

x25 HALT halt the program

9-21

Example: Using the TRAP Instruction
.ORIG x3000
LD R2, TERM ; Load negative ASCII ‘7’
LD R3, ASCII ; Load ASCII difference

AGAIN TRAP x23 ; input character
ADD R1, R2, R0 ; Test for terminate
BRz EXIT ; Exit if done
ADD R0, R0, R3 ; Change to lowercase
TRAP x21 ; Output to monitor...
BRnzp AGAIN ; ... again and again...

TERM .FILL xFFC9 ; -‘7’
ASCII .FILL x0020 ; lowercase bit
EXIT TRAP x25 ; halt

.END

9-22

Example: Output Service Routine
.ORIG x0430 ; syscall address
ST R7, SaveR7 ; save R7 & R1
ST R1, SaveR1

; ----- Write character
TryWrite LDI R1, DSR ; get status

BRzp TryWrite ; look for bit 15 on
WriteIt STI R0, DDR ; write char
; ----- Return from TRAP
Return LD R1, SaveR1 ; restore R1 & R7

LD R7, SaveR7
RET ; back to user

DSR .FILL xF3FC
DDR .FILL xF3FF
SaveR1 .FILL 0
SaveR7 .FILL 0

.END

stored in table,
location x21

9-23

JSR Instruction

Jumps to a location (like a branch but unconditional),
and saves current PC (addr of next instruction) in R7.

• saving the return address is called “linking”
• target address is PC-relative (PC + Sext(IR[10:0]))
• bit 11 specifies addressing mode

Øif =1, PC-relative: target address = PC + Sext(IR[10:0])
Øif =0, register: target address = contents of register IR[8:6]

9-24

Example: Negate the value in R0
2sComp NOT R0, R0 ; flip bits

ADD R0, R0, #1 ; add one
RET ; return to caller

To call from a program (within 1024 instructions):

; need to compute R4 = R1 - R3
ADD R0, R3, #0 ; copy R3 to R0
JSR 2sComp ; negate
ADD R4, R1, R0 ; add to R1
...

Note: Caller should save R0 if we’ll need it later!

8-25

Stack

Instructions are stored in code segment
Global data is stored in data segment
Local variables, including arryas, uses stack
Dynamically allocated memory uses heap

26

Memory Usage

Code
Data
Heap

↓
↑

Stack

nCode segment is write protected
n Initialized and uninitialized globals
nStack size is usually limited
nStack generally grows from higher to

lower addresses.

26

10-27

Basic Push and Pop Code
For our implementation, stack grows downward
(when item added, TOS moves closer to 0)
Push R0

ADD R6, R6, #-1 ; decrement stack ptr
STR R0, R6, #0 ; store data (R0)

Pop R0
LDR R0, R6, #0 ; load data from TOS
ADD R6, R6, #1 ; decrement stack ptr

Sometimes a Pop only adjusts the SP.

14-28

Run-Time Stack

main

Memory

R6

Watt

Memory

R6

main

Memory

main

Before call During call After call

R5

R5

R6
R5

14-29

Activation Record
int NoName(int a, int b)
{
int w, x, y;
.
.
.
return y;

}

Name Type Offset Scope

a
b
w
x
y

int
int
int
int
int

4
5
0
-1
-2

NoName
NoName
NoName
NoName
NoName

y
x
w

dynamic link
return address

return value
a
b

bookkeeping

locals

args

R5

Compiler generated Symbol table.
Offset relative to FP R5

Lower addresses ñ

14-30

Example Function Call
int Volta(int q, int r)
{
int k;
int m;
...
return k;

}

int Watt(int a)
{
int w;
...
w = Volta(w,10);
...
return w;

}

14-31

Calling the Function
w = Volta(w, 10);
; push second arg
AND R0, R0, #0
ADD R0, R0, #10
ADD R6, R6, #-1
STR R0, R6, #0
; push first argument
LDR R0, R5, #0
ADD R6, R6, #-1
STR R0, R6, #0

; call subroutine
JSR Volta

q
r
w

dyn link
ret addr
ret val

a

25
10
25

xFD00

new R6

Note: Caller needs to know number and type of arguments,
doesn't know about local variables.

R5
R6

14-32

Starting the Callee Function
; leave space for return value
ADD R6, R6, #-1
; push return address
ADD R6, R6, #-1
STR R7, R6, #0
; push dyn link (caller’s frame ptr)
ADD R6, R6, #-1
STR R5, R6, #0
; set new frame pointer
ADD R5, R6, #-1
; allocate space for locals
ADD R6, R6, #-2

m
k

dyn link
ret addr
ret val

q
r
w

dyn link
ret addr
ret val

a

xFCFB
x3100

25
10
25

xFD00

new R6
new R5

R6

R5

14-33

Ending the Callee Function
return k;

; copy k into return value
LDR R0, R5, #0
STR R0, R5, #3
; pop local variables
ADD R6, R5, #1
; pop dynamic link (into R5)
LDR R5, R6, #0
ADD R6, R6, #1
; pop return addr (into R7)
LDR R7, R6, #0
ADD R6, R6, #1
; return control to caller
RET

m
k

dyn link
ret addr
ret val

q
r
w

dyn link
ret addr
ret val

a

-43
217

xFCFB
x3100
217
25
10
25

xFD00

R6
R5

new R6

new R5

14-34

Resuming the Caller Function
w = Volta(w,10);

….
JSR Volta
; load return value (top of stack)
LDR R0, R6, #0
; perform assignment
STR R0, R5, #0
; pop return value
ADD R6, R6, #1
; pop arguments
ADD R6, R6, #2

ret val
q
r
w

dyn link
ret addr
ret val

a

217
25
10
217

xFD00

R6

R5
new R6

8-35

Input/Output

8-36

Input from Keyboard
When a character is typed:

• its ASCII code is placed in bits [7:0] of KBDR
(bits [15:8] are always zero)

• the “ready bit” (KBSR[15]) is set to one
• keyboard is disabled -- any typed characters will be ignored

When KBDR is read:
• KBSR[15] is set to zero
• keyboard is enabled

KBSR
KBDR

15 8 7 0

1514 0

keyboard data

ready bit

8-37

Basic Input Routine

new
char?

read
character

YES

NO

Polling

POLL LDI R0, KBSRPtr
BRzp POLL
LDI R0, KBDRPtr

...

KBSRPtr .FILL xFE00
KBDRPtr .FILL xFE02

8-38

Output to Monitor
When Monitor is ready to display another character:

• the “ready bit” (DSR[15]) is set to one

When data is written to Display Data Register:
• DSR[15] is set to zero
• character in DDR[7:0] is displayed
• any other character data written to DDR is ignored

(while DSR[15] is zero)

DSR
DDR

15 8 7 0

1514 0

output data

ready bit

8-39

Basic Output Routine

screen
ready?

write
character

YES

NO

Polling

POLL LDI R1, DSRPtr
BRzp POLL
STI R0, DDRPtr

...

DSRPtr .FILL xFE04
DDRPtr .FILL xFE06

8-40

Keyboard Echo Routine
Usually, input character is also printed to screen.

• User gets feedback on character typed
and knows its ok to type the next character.

new
char?

read
character

YES

NO

screen
ready?

write
character

YES

NO

POLL1 LDI R0, KBSRPtr
BRzp POLL1
LDI R0, KBDRPtr

POLL2 LDI R1, DSRPtr
BRzp POLL2
STI R0, DDRPtr

...

KBSRPtr .FILL xFE00
KBDRPtr .FILL xFE02
DSRPtr .FILL xFE04
DDRPtr .FILL xFE06

8-41

Output to Monitor
When Monitor is ready to display another character:

• the “ready bit” (DSR[15]) is set to one

When data is written to Display Data Register:
• DSR[15] is set to zero
• character in DDR[7:0] is displayed
• any other character data written to DDR is ignored

(while DSR[15] is zero)

DSR
DDR

15 8 7 0

1514 0

output data

ready bit

8-42

Keyboard Echo Routine
Usually, input character is also printed to screen.

• User gets feedback on character typed
and knows its ok to type the next character.

new
char?

read
character

YES

NO

screen
ready?

write
character

YES

NO

POLL1 LDI R0, KBSRPtr
BRzp POLL1
LDI R0, KBDRPtr

POLL2 LDI R1, DSRPtr
BRzp POLL2
STI R0, DDRPtr

...

KBSRPtr .FILL xFE00
KBDRPtr .FILL xFE02
DSRPtr .FILL xFE04
DDRPtr .FILL xFE06

8-43

Interrupt-Driven I/O
External device can:
(1) Force currently executing program to stop;
(2) Have the processor satisfy the device’s needs; and
(3) Resume the stopped program as if nothing happened.

Why?
• Polling consumes a lot of cycles,

especially for rare events – these cycles can be used
for more computation.

• Example: Process previous input while collecting
current input. (See Example 8.1 in text.)

8-44

Interrupt-Driven I/O
To implement an interrupt mechanism, we need:

• A way for the I/O device to signal the CPU that an
interesting event has occurred.

• A way for the CPU to test whether the interrupt signal is set
and whether its priority is higher than the current program.

Generating Signal
• Software sets "interrupt enable" bit in device register.
• When ready bit is set and IE bit is set, interrupt is signaled.

KBSR
1514 0

ready bit
13

interrupt enable bit

interrupt signal
to processor

8-45

Priority
Every instruction executes at a stated level of urgency.
LC-3: 8 priority levels (PL0-PL7)

• Example:
ØPayroll program runs at PL0.
ØNuclear power correction program runs at PL6.

• It’s OK for PL6 device to interrupt PL0 program,
but not the other way around.

Priority encoder selects highest-priority device,
compares to current processor priority level,
and generates interrupt signal if appropriate.

8-46

Testing for Interrupt Signal
CPU looks at signal between STORE and FETCH phases.
If not set, continues with next instruction.
If set, transfers control to interrupt service routine.

EA

OP

EX

S

F

D

interrupt
signal?

Transfer to
ISR

NO

YES

More details in Chapter 10.

10-47

Returning from Interrupt
Special instruction – RTI – that restores state.

1. Pop PC from supervisor stack. (PC = M[R6]; R6 = R6 + 1)
2. Pop PSR from supervisor stack. (PSR = M[R6]; R6 = R6 + 1)
3. If PSR[15] = 1, R6 = Saved.USP.

(If going back to user mode, need to restore User Stack Pointer.)

RTI is a privileged instruction.
• Can only be executed in Supervisor Mode.
• If executed in User Mode, causes an exception.

(More about that later.)

10-48

Interrupt-Driven I/O (Part 2)
Interrupts were introduced in Chapter 8.

1. External device signals need to be serviced.
2. Processor saves state and starts service routine.
3. When finished, processor restores state and resumes program.

Chapter 8 didn’t explain how (2) and (3) occur,
because it involves a stack.

Now, we’re ready…

Interrupt is an unscripted subroutine call,
triggered by an external event.

10-49

Processor State
What state is needed to completely capture the
state of a running process?
Processor Status Register

• Privilege [15], Priority Level [10:8], Condition Codes [2:0]

Program Counter
• Pointer to next instruction to be executed.

Registers
• All temporary state of the process that’s not stored in memory.

Direct Memory Access Structure

high-speed I/O devices
Device controller transfers
blocks of data from buffer
storage directly to main
memory without CPU
intervention
Only one interrupt is
generated per block

16-51

Example: LC-3 Code
; i is 1st local (offset 0), ptr is 2nd (offset -1)
; i = 4;

AND R0, R0, #0 ; clear R0
ADD R0, R0, #4 ; put 4 in R0
STR R0, R5, #0 ; store in i

; ptr = &i;
ADD R0, R5, #0 ; R0 = R5 + 0 (addr of i)
STR R0, R5, #-1 ; store in ptr

; *ptr = *ptr + 1;
LDR R0, R5, #-1 ; R0 = ptr
LDR R1, R0, #0 ; load contents (*ptr)
ADD R1, R1, #1 ; add one
STR R1, R0, #0 ; store result where R0 points

8-52

Microarchitecture

5-53

LC-3
Data Path
Revisited

Filled arrow
= info to be processed.

Unfilled arrow
= control signal.

Registers
Every register is connected to some inputs and has a
special “load” signal.

• If load signal is 1 at the next clock tick the input is stored into the
register

• Otherwise, no change in register contents
(LD.PC & (PCMux = 10)) ? PC ß PC+1

In terms of simple RTN notation
Cycle 2: PC ß PC+1

Which assumes that during Cycle2 LD.PC & (PCMux = 10) is
true.

Sometimes the condition is not specified, if it is implied.

54

How does the LC-3 fetch an instruction?

55

Transfer the PC into MAR

Cycle 1: MAR ß PC # LD.MAR, GatePC

Read memory; increment PC

Cycle 2: MDR ß Mem[MAR]; PC ß PC+1 # LD.MDR, MDR.SEL,
MEM.EN, LD.PC, PCMUX

Transfer MDR into IR

Cycle 3: IR ß MDR # LD.IR, GateMDR

