
11/28/2016

1

CS 270 Computer Organization

Fall 2016

Microarchitecture &

Register Transfer Notation

Sanjay Rajopadhye

Colorado State University

Microarchitecture

 Hardware components in a digital circuit or

system

 What they are

 How they are connected

Also called datapath

2

Main components

 (Combinational) logic

 Functions (adders, multipliers, shifters)

 MUXes

 Wiring

 Point-to-point

 Busses

 Storage

 Small scale storage (registers)

 Large scale storage (memory)

 Control (contains storage, logic and wiring)

3

Abstraction

 Logic and wiring are instantaneous

 Output is always a function of the values on input
wires

 If input changes, the change is “processed
immediately”

 Storage elements are timed

 Clock – a special signal that determines this timing

 Storage can be updated only at the tick of the clock

 What happens between ticks?

 The “current” values are processed by logic and
wiring to produce values …

 … that will be used to update at the “next tick”

4

11/28/2016

2

Combinational Logic

 A digital circuit that computes a function of
the inputs.

Examples:

 Adder: takes X and Y and produces X + Y

 AND: takes X and Y, produces bitwise and

 NOT: takes X and Y and produces ~X

 MUX: takes three inputs, X, Y and s (the last
one is 1-bit) and produces (note that this is C-
syntax, not the RTN that we will show later)
(s==0) ? X : Y

5

Wires and Busses

 Wires are (almost) just like electrical wires

 Directional (arrows)

 May have a “thickness:” number of bits of

data: e.g., the adder output is 16-bits in LC-3

 Busses:

 Shared wires

 Anyone can read at all times

 Write is via arbitration (control signals to

decide who gets to write on the bus)

6

Storage Elements

 Large scale storage (memory): view it like

an array

 Address + Data

 Small scale storage (registers):

 Programmer-visible registers: R0 … R7

 Special purpose registers:

 PC, IR, PSR (processor status register), MAR,

MDR

7

Memory

 Processor issues commands to memory, who responds
 Mem.EN (memory enable): hey, I’m talking to you

 Mem.RW: here’s what I want you to do

 Two special registers
 Memory Address Register (MAR): only processor writes to

this

 Memory Data Register (MDR): both processor/memory
can write to this
 the processor arbitrates

 If Mem.EN and if Mem.RW==0, (i.e.., read) the memory
copies the value at address MAR into the MDR,
otherwise copy the contents of MDR into Mem[MAR]
(Mem.EN && ~ Mem.RW) ? MDR  Mem[MAR] :
((Mem.EN && Mem.RW) ? Mem[MAR]  MDR)

8

11/28/2016

3

Registers

Every register

 is connected to some inputs

 has a special “load” signal

 If load signal is 1 at the next clock tick the

input is stored into the register

 Otherwise, no change in register contents

(LD.PC) ? PC  PC+1

9

Register Transfer Notation

 Compact, “program-like” notation

 Describe what happens in the datapath

 One or more transfers per clock tick
 one line = one clock tick

 Two columns:
 Write the desired transfers

 List control signals to “effect the transfer”

 Let’s move on to LC3-Viz (special thanks, Joe
Arnett)

 Corrections
 BR uses IR[8:0] instead of IR[10:0] for the PC

offset

11

RTN/LC3-Viz Conventions

 Signals indicated must be asserted before the
clock tick in order for the indicated transfer to
occur. Sequence is:

 Signals are asserted

 Clock tick arrives, and causes the transfer

 In an RTN transfer, on either the right hand side
(rhs), or left hand side (lhs)

 Mem[x] is the memory at address x

 Mem[MAR] is the memory at address that is in
the MAR

 Reg[x] is Register number x

12

11/28/2016

4

RTN Conventions

 An RTN transfer is of the form:

LHS-location  RHS-expression

 The LHSlocation may be a memory or a

specific register or the x-th register

 The RHS-expression is:

 named registers, e.g., Reg[3]

 memory locations e.g., Mem[MAR]

 simple expressions PC+1, Reg[src] + Reg[dst]

13

How does the LC-3 fetch an

instruction?

14

Transfer the PC into MAR
Cycle 1: MAR  PC # LD.MAR, GatePC

Read memory; increment PC
Cycle 2: MDR  Mem[MAR]; PC  PC+1 # LD.MDR, MDR.SEL, MEM.EN,

LD.PC, PCMUX

Transfer MDR into IR
Cycle 3: IR  MDR # LD.IR, GATEMDR

How does the LC-3 decode the

instruction?

15

Special decode step (controller makes decision, no clock cycle is
wasted since it only involves logic)

No visible signal is active

How does the LC-3 execute a

NOT instruction?

16

Src register contents are negated by ALU and result is stored in
dst register

Cycle 4: Reg[dst]  ~Reg[src]; CC  Sign(~Reg[src]) # LD.REG,
DR = dst,
GATEALU,
ALUK = ~,
SR1 = src,
LD.CC

11/28/2016

5

Other instructions

 Every instruction is a sequence of transfers

 Every one has the same first three cycles
(instruction fetch)

 Every one takes (at least one) additional cycle

 Some take even more more

 Each one effected by a specific set of control
signals

 The Controller is responsible for generating
the correct signals in the appropriate cycle

 Reminder
 Logic is instantaneous,

 Storage (transfers) are on clock ticks

17

