
9/8/2016

1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 14

Functions

Original slides from Gregory Byrd, North

Carolina State University

Modified slides by Chris Wilcox,

Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functions

Smaller, simpler, subcomponent of program

Provides abstraction

 hide low-level details, give high-level structure

 easier to understand overall program flow

 enables separable, independent development

C functions

 not methods—no objects, here!

 zero or multiple arguments passed in

 single result returned (optional)

 return value is always a particular type

In other languages, called procedures, routines, ...
2CS270 - Fall Semester 2016

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Example of High-Level Structure

int main()

{

SetupBoard(); /* place pieces on board */

DetermineSides(); /* choose black/white */

/* Play game */

do {

WhitesTurn();

BlacksTurn();

} while (NoOutcomeYet());

}

Structure of program
is evident, even without

knowing implementation.

3CS270 - Fall Semester 2016

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Functions in C

Declaration (also called prototype)

int Factorial(int n);

Function call -- used in expression

a = x + Factorial(f + g);

type of

return value

name of

function

types of all

arguments

1. evaluate arguments

2, execute function

3. use return value in expression
4CS270 - Fall Semester 2016

9/8/2016

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Function Definition
State type, name, types of arguments

 must match function declaration

 give name to each argument (doesn’t have to match

declaration)

int Factorial(int n)

{

int i;

int result = 1;

for (i = 1; i <= n; i++)

result *= i;

return result;

}

gives control back to

calling function and

returns value

5CS270 - Fall Semester 2016

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Why Declaration?

Since function definition also includes

return and argument types, why is declaration

needed?

Use might be seen before definition.

Compiler needs to know return and arg types

and number of arguments.

Definition might be in a different file, written by

a different programmer.

 include a “header” file with function declarations only

 compile separately, link together to make executable

6CS270 - Fall Semester 2016

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

double ValueInDollars(double amount, double rate);

int main()

{

...

dollars = ValueInDollars(francs,

DOLLARS_PER_FRANC);

printf("%f francs equals %f dollars.\n",

francs, dollars);

...

}

double ValueInDollars(double amount, double rate)

{

return amount * rate;

}

Example

function declaration (prototype)

function call (invocation)

function definition (code)

7CS270 - Fall Semester 2016

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Implementing Functions: Overview
Activation record (stack frame)

 information about each function,

including arguments and local variables

 stored on run-time stack

Calling function

push new activation

record

copy values into

arguments

call function

get result from stack

Called function

execute code

put result in

activation record

pop activation record

from stack

return

8CS270 - Fall Semester 2016

