. e disply.

Chapter 14
Functions

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

‘Copyright © The McGraw Hil Companies, Inc. Permission required for reproducton or display.

Functions

@ Smaller, simpler, subcomponent of program
@ Provides abstraction

= hide low-level details, give high-level structure

= easier to understand overall program flow

= enables separable, independent development
@ C functions

= not methods—no objects, here!

= zero or multiple arguments passed in

= single result returned (optional)

= return value is always a particular type
@ In other languages, called procedures, routines, ...

CS270 - Fall Semester 2016 2

Copyight © inc. display

Example of High-Level Structure

int main()

{
SetupBoard(); /* place pieces on board */
DetermineSides () ; /* choose black/white */
/* Play game */ Structure of program
do { is evident, even without
WhitesTurn () ; knowing implementation.
BlacksTurn() ;
} while (NoOutcomeYet()) ;
}

CS270 - Fall Semester 2016 3

Copyright © The McGrawHil Companies, Inc. Pemmission required for eproduction or cisplay.

Functions in C

@ Declaration (also called prototype)
int Factorial (int n);

/ N\

type of name of types of all
return value function arguments

@ Function call -- used in expression
a = x + Factorial(f + qg);

‘ 1. evaluate arguments ‘

2, execute function

3. use return value in expression ‘

CS270 - Fall Semester 2016 4




Copyight © The e, display.

Function Definition

@ State type, name, types of arguments

= must match function declaration

= give name to each argument (doesn’t have to match
declaration)

int Factorial (int n)

{
int i;
int result = 1;
for (i = 1; i <= n; i++)

result *= i;

return result; gives control back to

calling function and
returns value

‘Copyright © The McGraw Hil Companies, Inc. Permission required for reproducton or display.

Why Declaration?

@ Since function definition also includes
return and argument types, why is declaration
needed?
@ Use might be seen before definition.
Compiler needs to know return and arg types
and number of arguments.
@ Definition might be in a different file, written by
a different programmer.
= include a “header” file with function declarations only
= compile separately, link together to make executable

>S270 - Fall Semester 2016

Copyight ©The inc. display

Example
double ValueInDollars (double amount, double rate);
int main 0" function declaration (prototype)
! 4« function call (invocation)

dollars = ValueInDollars (francs,
DOLLARS_PER_FRANC) ;
printf ("%f francs equals %f dollars.\n",
francs, dollars) ;

} — function definition (code) ‘

double ValueInDollars (double amount, double rate)
{

return amount * rate;

Copyright © nc o or display.

Implementing Functions: Overview

@ Activation record (stack frame)

= information about each function,
including arguments and local variables
= stored on run-time stack
Calling function

push new activation Called function
record .

copy values into »execute code
arguments — put resultin

callfunction _—— activation record

\ pop activation record
getresult from stack———___| from stack

return

€S270 - Fall Semester 2016




