
1

Chapter2

Bits, Data Types,

and Operations

Original slides from Gregory Byrd, North

Carolina State University

Modified slides by Chris Wilcox, Andres

Calderon J. and Sanjay Rajopadhye

Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2CS270 - Fall Semester 2016

How do we represent data in a

computer?

At the lowest level, a computer is an electronic

machine.

 works by controlling the flow of electrons

Easy to recognize two conditions:

1. presence of a voltage – we’ll call this state “1”

2. absence of a voltage – we’ll call this state “0”

Could base state on value of voltage,

but control and detection circuits more complex.

 compare turning on a light switch to

measuring or regulating voltage

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3CS270 - Fall Semester 2016

Computer is a binary digital system.

Basic unit of information is the binary digit, or bit.

Values with >2 states require multiple bits.
 A collection of two bits has four possible states:

00, 01, 10, 11

 A collection of three bits has eight possible states:

000, 001, 010, 011, 100, 101, 110, 111

 A collection of n bits has 2n possible states.

Binary (base two) system:

• has two states: 0 and 1

Digital system:

• finite number of symbols

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4CS270 - Fall Semester 2016

What kinds of data do we need to

represent?

 Numbers – signed, unsigned, integers, floating point,

complex, rational, irrational, …

 Text – characters, strings, …

 Logical – true, false

 Images – pixels, colors, shapes, …

 Sound – wave forms

 Instructions

 …

Data type:

 representation and operations within the computer

We’ll start with numbers…

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5CS270 - Fall Semester 2016

Unsigned Integers

Non-positional notation

 could represent a number (“5”) with a string of ones

(“11111”)

 problems?

Weighted positional notation

 like decimal numbers: “329”

 “3” is worth 300, because of its position, while “9” is only

worth 9

329

102 101 100

101

22 21 20

3x100 + 2x10 + 9x1 = 329 1x4 + 0x2 + 1x1 = 5

most

significant

least

significant

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6CS270 - Fall Semester 2016

Unsigned Integers (cont.)

An n-bit unsigned integer represents 2n values:

from 0 to 2n-1.

22 21 20

0 0 0 0

0 0 1 1

0 1 0 2

0 1 1 3

1 0 0 4

1 0 1 5

1 1 0 6

1 1 1 7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7CS270 - Fall Semester 2016

Unsigned Binary Arithmetic

Base-2 addition – just like base-10!

 add from right to left, propagating carry

10010 10010 1111

+ 1001 + 1011 + 1

11011 11101 10000

10111

+ 111

carry

Subtraction, multiplication, division: remember integer math!

carry

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8CS270 - Fall Semester 2016

Signed Integers
With n bits, we have 2n distinct values.
 assign about half to positive integers (1 through 2n-1-1)

 assign about half to negative (- 2n-1-1 through -1)

 that leaves two values: one for 0, and one extra

Positive integers
 just like unsigned – zero in most significant (MS) bit

00101 = 5

Negative integers
 sign-magnitude – set sign bit to show negative

10101 = -5

 One’s complement – flip every bit to represent negative

11010 = -5

 in either case, MS bit indicates sign: 0=pos., 1=neg.

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9CS270 - Fall Semester 2016

Two’s Complement

Problems with sign-magnitude, 1’s complement
 two representations of zero (+0 and –0)

 arithmetic circuits are complex

How to add two sign-magnitude numbers?
 e.g., try 2 + (-3)

How to add to one’s complement numbers?
 e.g., try 4 + (-3)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10CS270 - Fall Semester 2016

Two’s Complement

Two’s complement representation developed to
make circuits easy for arithmetic.
 for each positive number (X), assign value to its

negative (-X),
such that X + (-X) = 0 with “normal” addition, ignoring
carry out

00101 (5) 01001 (9)

+ 11011 (-5) + (-9)

00000 (0) 00000 (0)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11CS270 - Fall Semester 2016

Two’s Complement Representation

If number is positive or zero,

 normal binary representation, zeroes in upper bit(s)

If number is negative,

 start with positive number

 flip every bit (i.e., take the one’s complement)

 then add one

00101 (5) 01001 (9)

11010 (1’s comp) (1’s comp)

+ 1 + 1

11011 (-5) (-9)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12CS270 - Fall Semester 2016

Two’s Complement Shortcut

To take the two’s complement of a number:

 copy bits from right to left until (and including) first “1”

 flip remaining bits to the left

011010000 011010000

100101111 (1’s comp)

+ 1

100110000 100110000

(copy)(flip)

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13CS270 - Fall Semester 2016

Two’s Complement Signed Integers
MS bit is sign bit – it has weight –2n-1.

Range of an n-bit number: -2n-1 through 2n-1 – 1.

 The most negative number has no positive counterpart.

-23 22 21 20

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

0 1 1 1 7

-23 22 21 20

1 0 0 0 -8

1 0 0 1 -7

1 0 1 0 -6

1 0 1 1 -5

1 1 0 0 -4

1 1 0 1 -3

1 1 1 0 -2

1 1 1 1 -1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14CS270 - Fall Semester 2016

Converting Binary (2’s C) to Decimal

1. If leading bit is one, take two’s

complement to get a positive number.

2. Add powers of 2 that have “1” in the

corresponding bit positions.

3. If original number was negative,

add a minus sign.

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

X = 01101000two

= 26+25+23 = 64+32+8

= 104ten

Assuming 8-bit 2’s complement numbers.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15CS270 - Fall Semester 2016

More Examples

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

Assuming 8-bit 2’s complement numbers.

X = 00100111two

= 25+22+21+20 = 32+4+2+1

= 39ten

X = 11100110two

-X = 00011010

= 24+23+21 = 16+8+2

= 26ten

X = -26ten

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16CS270 - Fall Semester 2016

Converting Decimal to Binary (2’s C)

First Method: Division

1. Find magnitude of decimal

number.

2. Divide by two – remainder is

least significant bit.

3. Keep dividing by two until

answer is zero,

writing remainders from right to

left.

4. Append a leading 0. If original

was negative, take two’s

complement.

X = 104ten

104÷2 = 52 104%2 = 0

52÷2 = 26 52%2 = 0

26÷2 = 13 26%2 = 0

13÷2 = 6 13%2 = 1

6÷2 = 3 6%2 = 0

3÷2 = 1 3%2 = 1

1÷2 = 0 1%2 = 1

X = 01101000two

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17CS270 - Fall Semester 2016

Converting Decimal to Binary (2’s C)

Second Method: Subtract Powers of Two

1. Find magnitude of decimal number.

2. Subtract largest power of two

less than or equal to number.

3. Put a one in the corresponding bit position.

4. Keep subtracting until result is zero.

5. Append a zero as MS bit;

if original was negative, take two’s complement.

X = 104ten 104 - 64 = 40 bit 6

40 - 32 = 8 bit 5

8 - 8 = 0 bit 3

X = 01101000two

n 2n

0 1

1 2

2 4

3 8

4 16

5 32

6 64

7 128

8 256

9 512

10 1024

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18CS270 - Fall Semester 2016

Operations: Arithmetic and Logical
Recall: data types include representation and
operations.

2’s complement is a good representation for signed
integers, now we need arithmetic operations:
 Addition (including overflow)

 Subtraction

 Sign Extension

Multiplication and division can be built from these
basic operations.

Logical operations are also useful:
 AND

 OR

 NOT

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19CS270 - Fall Semester 2016

Addition

As we’ve discussed, 2’s comp. addition is just

binary addition.

 assume all integers have the same number of bits

 ignore carry out

 for now, assume that sum fits in n-bit 2’s comp.

representation

01101000 (104) 11110110 (-10)

+ 11110000 (-16) + (-9)

01011000 (98) (-19)

Assuming 8-bit 2’s complement numbers.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20CS270 - Fall Semester 2016

Subtraction
Negate second operand, then add.

 assume all integers have the same number of bits

 ignore carry out

 for now, assume that difference fits in n-bit 2’s comp.

representation

01101000 (104) 11110110 (-10)

- 00010000 (16) - (-9)

01101000 (104) 11110110 (-10)

+ 11110000 (-16) + (9)

01011000 (88) (-1)

Assuming 8-bit 2’s complement numbers.

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21CS270 - Fall Semester 2016

Sign Extension

To add two numbers, we must represent them

with the same number of bits.

If we just pad with zeroes on the left:

Instead, replicate the MS bit -- the sign bit:

4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 00001100 (12, not -4)

4-bit 8-bit
0100 (4) 00000100 (still 4)

1100 (-4) 11111100 (still -4)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22CS270 - Fall Semester 2016

Overflow
If operands are too big, then sum cannot be

represented as an n-bit 2’s comp number.

We have overflow if:

 signs of both operands are the same, and

 sign of sum is different.

Another test -- easy for hardware:

 carry into MS bit does not equal carry out

01000 (8) 11000 (-8)

+ 01001 (9) + 10111 (-9)

10001 (-15) 01111 (+15)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23CS270 - Fall Semester 2016

Logical Operations
Operations on logical TRUE or FALSE

 two states -- takes one bit to represent: TRUE=1,

FALSE=0

View n-bit number as a collection of n logical values

 operation applied to each bit independently

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

A NOT A

0 1

1 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24CS270 - Fall Semester 2016

Examples of Logical Operations

AND
 useful for clearing bits

AND with zero = 0

AND with one = no change

OR

 useful for setting bits

OR with zero = no change

OR with one = 1

NOT
 unary operation -- one argument

 flips every bit

11000101

AND 00001111

00000101

11000101

OR 00001111

11001111

NOT 11000101

00111010

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25CS270 - Fall Semester 2016

Hexadecimal Notation

It is often convenient to write binary (base-2)

numbers in hexadecimal (base-16) instead.

 fewer digits - four bits per hex digit

 less error prone - no long string of 1’s and 0’s

Binary Hex Decimal

0000 0 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7

Binary Hex Decimal

1000 8 8

1001 9 9

1010 A 10

1011 B 11

1100 C 12

1101 D 13

1110 E 14

1111 F 15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26CS270 - Fall Semester 2016

Converting from Binary to Hexadecimal

Every four bits is a hex digit.

 start grouping from right-hand side

011 1010 1000 1111 0100 1101 0111

7D4F8A3

This is not a new machine representation,

just a convenient way to write the number.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27CS270 - Fall Semester 2016

Fractions: Fixed-Point

How can we represent fractions?

 Use a “binary point” to separate positive from

negative powers of two -- just like “decimal point.”

 2’s comp addition and subtraction still work (if binary

points are aligned)

00101000.101 (40.625)

+ 11111110.110 (-1.25)

00100111.011 (39.375)

2-1 = 0.5

2-2 = 0.25

2-3 = 0.125

No new operations -- same as integer arithmetic.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28CS270 - Fall Semester 2016

Very Large and Very Small: Floating-

Point

Large values: 6.023 x 1023 -- requires 79 bits

Small values: 6.626 x 10-34 -- requires >110 bits

Use equivalent of “scientific notation”: F x 2E

Must have F (fraction), E (exponent), and sign.

IEEE 754 Floating-Point Standard (32-bits):

S Exponent Fraction

1b 8b 23b

0exponent,2fraction.0)1(

254exponent1,2fraction.1)1(

126

127exponent









S

S

N

N

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29CS270 - Fall Semester 2016

Floating Point Example

Single-precision IEEE floating point number:

1 01111110 10000000000000000000000

 Sign is 1 – number is negative.

 Exponent field is 01111110 = 126 (decimal).

 Fraction is 1.100000000000… = 1.5 (decimal).

Value = -1.5 x 2(126-127) = -1.5 x 2-1 = -0.75

sign exponent fraction

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

30CS270 - Fall Semester 2016

Floating-Point Operations

Will regular 2’s complement arithmetic work for

Floating Point numbers?

(Hint: In decimal, how do we compute 3.07 x 1012 + 9.11 x

108?)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31CS270 - Fall Semester 2016

Text: ASCII Characters

ASCII: Maps 128 characters to 7-bit code.

 printable and non-printable (ESC, DEL, …) characters
00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p

01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q

02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r

03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s

04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t

05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u

06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v

07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w

08 bs 18 can 28 (38 8 48 H 58 X 68 h 78 x

09 ht 19 em 29) 39 9 49 I 59 Y 69 i 79 y

0a nl 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z

0b vt 1b esc 2b + 3b ; 4b K 5b [6b k 7b {

0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c |

0d cr 1d gs 2d - 3d = 4d M 5d] 6d m 7d }

0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~

0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

32CS270 - Fall Semester 2016

Text: ASCII Characters

ASCII is a seven-bit code. “Eight-bit ASCII”

makes as sense as a square circle.

There is no need to memorize the ASCII chart.

There is no need to insert ASCII values into a

program.

 if (c >= 65 && c <= 90) … // just showing off

 if (c >= 'A' && c <= 'Z') … // easy to understand

 if ('A' <= c && c <= 'Z') … // I like this even more

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33CS270 - Fall Semester 2016

Interesting Properties of ASCII Code

What is relationship between a decimal digit ('0',

'1', …) and its ASCII code?

What is the difference between an upper-case

letter ('A', 'B', …) and its lower-case equivalent ('a',

'b', …)?

Given two ASCII characters, how do we tell which

comes first in alphabetical order?

Are 128 characters enough?
(http://www.unicode.org/)

No new operations needed for ASCII codes –

integer arithmetic and logic are sufficient.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

34CS270 - Fall Semester 2016

Other Data Types
Text strings

 array of characters, terminated with null character ('\0')

 typically, no hardware support

Image
 array of pixels

monochrome: one bit (0/1 = black/white)

color: red, green, blue (RGB) components

other properties: transparency

 hardware support:

typically none, in general-purpose processors

MMX -- multiple 8-bit operations on 32-bit word

Sound
 sequence of fixed-point numbers

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

35CS270 - Fall Semester 2016

LC-3 Data Types

Some data types are supported directly by the

instruction set architecture.

For LC-3, there is only one hardware-supported

data type:

 16-bit 2’s complement signed integer

 Operations: ADD, AND, NOT

Other data types are supported by interpreting

16-bit values as logical, text, fixed-point, floating-

point, etc., in the software that we write.

