Chapter 3
Digital Logic
Structures

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by Chris Wilcox,
Colorado State University

Copyight © The . e,

Computing Layers

Problems

Devices <——

€S270 - Fall Semester 2016

Copyight & The panies, Inc o or display.

Transistor: Digital Building Blocks

@ Microprocessors contain lots of transistors

= Intel 8086 (1978): 29 thousand

= Intel 80186 (1982): 55 thousand

= Intel 80386 (1985): 275 thousand

= Intel 80486 (1989): 1.1 million

= Intel Pentium (1993): 3.1 million

= Intel Pentium Il (1998): 7.5 million

= Intel Pentium Il (2001): 45 million

= Intel Pentium 4 (2006): 184 million

= Intel Core 2 Duo (2006): 291 million

= Intel Quad Core i7 (2011): 1.1 billion

= Intel 8-core Xeon (2012): 2.3 billion

CS270 - Fall Semester 2016 3

Copyight © The . e,

Microprocessor Transistor Counts 1971-2011 & Moore's Law

2,600,000,000 -
1,000,000,000 -

100,000,000 -

Transistor count

1971 1980 1950 2000 2011
Date of introduction
€S270 - Fall Semester 2016

‘Copyright © The McGraw-Hil Comparies, Inc, Permission requied forreproducton or disply.

Transistor: Digital Building Blocks

@ Logically, each transistor acts as a switch

@ Combined to implement logic functions (gates)
= AND, OR, NOT

@ Combined to build higher-level structures
= Multiplexer, decoder, register, memory ...
= Adder, multiplier ...

@ Combined to build simple processor
= LC-3

CS270 - Fall Semester 2016

Copyight © The e, disply.

Simple Switch Circuit

@ Switch open:

= Open circuit, no
current

= Lightis off
= Vg is +2.9V
@ Switch closed:
out = Short circuit across
switch, current flows
= Lightis on
= Vo is OV
Switch-based circuits can easily represent two states:
on/off, open/closed, voltage/no voltage.

€S270 - Fall Semester 2016

2.9V

Copyright © The McGraw-Hil Comparses, In. Permission required for reproducton or display.

n-type MOS Transistor

@ MOS = Metal Oxide Semiconductor
= two types: n-type and p-type
@ n-type
= when Gate has positive voltage,

short circuit between #1 and #2
(switch closed)

= when Gate has zero voltage,
open circuit between #1 and #2
(switch open) #

Gate —i
Terminal #2 must be
/
connected to GND (0V). #2

GND

CS270 - Fall Semester 2016

Copyight © The ne. P display.

p-type MOS Transistor

@ p-type is complementary to n-type

= when Gate has positive voltage,
open circuit between #1 and #2
(switch open) m
#2

= when Gate has zero voltage,
short circuit between #1 and #2
(switch closed)

+2.9V

Terminal #1 must be Gate
connected to +2.9V. #2

CS270 - Fall Semester 2016

Copyright © The

. nc,

Physical Transistor

CS270 - Fall

Copyight © The ne.

Transistor Output (Ideal)

T T " L
I I I I
I I T I
I I I I

I
L
BN I
T
I

T | A WS 53 I EEE] 5 ENEN)

AR aAn R A ainne
2

e e T T SR

Transistor Output (Actual)

Copyright & The

. nc.

\
\

- -
Sws Cwey

Copyight © The e

Propagation Delay

‘Copyright © The McGraw-Hil Comparies, Inc, Permission requied forreproducton or disply.

Logic Gates

@ Use switch behavior of MOS transistors
to implement logical functions: AND, OR, NOT.

@ Digital symbols:
= recall that we assign a range of analog voltages to
each digital (logic) symbol
Digital Values » “0” lllegal “1”
L i I]
Analog Values » (l) 0?5 2I,4 2I.9 Volts

= assignment of voltage ranges depends on
electrical properties of transistors being used

@ typical values for "1": +5V, +3.3V, +2.9V
@ from now on we'll use +2.9V

Copyight © The e, disply.

CMOS Circuit

@ Complementary MOS
@ Uses both n-type and p-type MOS transistors
= p-type
@ Attached to + voltage
@ Pulls output voltage UP when input is zero
= N-type
@ Attached to GND
@ Pulls output voltage DOWN when input is one

@ For all inputs, make sure that output is either
connected to GND or to +, but not both!

CS270 - Fall Semester 2016 13 CS270 - Fall Semester 2016 14
Inverter (NOT Gate) Logical Operation: OR and NOR
Z?P-type
A B | OR A B |NOR
In=0 Out=1 0 o 0 0 o 1
In Out {IN-type 0 1| 1 0 1|0
J’ 10| 1 1 0| o0
T ioa | 1 1] o0
P-type Inputs: 2 or more
In [out In |out In=1 Out=0 D D‘
| N-type L
e Output=A+B Output=A+B

OVI23V 0 | 1 [table
0

CS270 - Fall Semester 2016 15

CS270 - Fall Semester 2016

Copyright © Tt

he. Inc,

AND and NAND

NOR Gate (Not of OR)
A=0 4
_4 B=1

Copyight © The

NAND Gate (AND-NOT)

Copyright & . nc,

AND Gate

Copyight © The ne.

Basic Logic Gates

Copyright & . nc,

Boolean Algebra

Copyight © The e

Boolean Algebra Laws

@ Commutative
= A+B =B+A
= AB =B°A

@ Associative

Copyright © The McGraw-+ red for reproduction or display.

Useful Simplification Identities

@ AB+AB = A
Proof: AB+AB = A(B+B) /I Distributive Law
= A(T) Il Negation Law
=A I/ |dentity Law

@ A+AB = A
Proof: A+AB =A(1+B) // Distributive Law
=A(2) // Domination Law
=A 1/ \dentity Law

CS270 - Fall Semester 2016

Copyight © The e, display.

DeMorgan's Law

@ Converting AND to OR (with some help from NOT)
@ Consider the following gate:

A =
i To convert AND to OR

AB|AB|AaB|AB (or vice versa),
001 1| 1 0 invert inputs and output.
01|1 0| O 1

10[(0 1| O 1

11(0 O0f O 1

Same as AOR B!

CS270 - Fall Semester 2016 26

Copyright © The McGraw-Hil Comparses, In. Permission required for reproducton or display.

More than 2 Inputs?
@ AND/OR can take any number of inputs.
= AND =1 if all inputs are 1.
« OR =1ifanyinputis 1.
= Similar for NAND/NOR.
@ Can implement with multiple two-input gates,
or with single CMOS circuit.

CS270 - Fall Semester 2016 27

Copyight © The ne. P ordisplay.

Summary

@ MOS transistors are used as switches to
implement logic functions.
= N-type: connect to GND, turn on (1) to pull down to O
= p-type: connect to +2.9V, turn on (0) to pull up to 1
@ Basic gates: NOT, NOR, NAND

= Logic functions are usually expressed with AND, OR,
and NOT

@ DeMorgan's Law

= Convert AND to OR (and vice versa)
by inverting inputs and output

CS270 - Fall Semester 2016 28

Copyright © The McGraw-Hil Cor quired for eproduction or display.

Building Functions from Logic Gates

@ Combinational Logic Circuit
= output depends only on the current inputs
= stateless

@ Sequential Logic Circuit

= output depends on the sequence of inputs (past and
present)

= stores information (state) from past inputs

@ We'll first look at some useful combinational
circuits, then show how to use sequential circuits
to store information.

CS270 - Fall Semester 2016 29

Copyight © The e, display.

Building Complex Functions

Start with a truth table. Two approaches
@ Use gates as the building block
=Systematically derive the circuit

@ one row = one gate

@ minimize the gates (e.g., K-maps, QMcC)
@ Use fransistors directly as building blocks
=Translate the truth table into a circuit for the pull-up circuit
=Also translate it into a different circuit for the pull-down circuit

=Both are very closely related — so transform the pull-up
circuit into the pull-down circuit

CS270 - Fall Semester 2016 30

Copyright © The McGraw-Hil Comparies, In. Per

Series Parallel Circuits (SPC)

@ Simple (recursive) rules to define an important
family of circuits

@ Useful to design combinational logic
@ Expose/reinforce recursive thinking

@ Alternative view of basic concepts
= Universality
= Transformations & Equivalence

CS270 - Fall Semester 2016 31

Copyight © The ne. P ordisplay.

SPC Recursive Rules

@ A single transistor by itself is a series-parallel circuit
(with source and drain defining the “direction” of
current flow, i.e., input and output)

@ SPCs iin series make an SPC. If Xand Y are SPC’s

= Connect the output of X to input of Y
= Input of X is the input of the new circuit
= Output of Y is the output of the new SPC
@ SPCs iin paralfel make an SPC. If Xand Y are SPC’s
= Connect inputs of X and Y, and outputs of X and Y
= Input of X (or Y) is the input of the new circuit
= Output of X (or Y) is the output of the new SPC

CS270 - Fall Semester 2016 32

Copyright © The McGraw-+ red for reproduction or display.

Two more rules

@ Nothing else is an SPC (the previous rules are
“complete”)

@ All transistors in an SPC must be of the same type
= either all p-type
= or all n-type
= this is the type of the SPC

CS270 - Fall Semester 2016 33

Copyight © The e, display.

SPCs to design Boolean functions

Describe the desired circuit behavior as a truth table,
and design p-type SPC as the “pull up” and an n-
type SPC as the “pull down”

@For every input combination where the output is 1

= The pull up circuit must provide a path between Vp and
the output

@For every input combination where the output is O

= The pull down circuit must provide a path between GND
and the output

CS270 - Fall Semester 2016 34

Copyright © The McGraw-Hil Comparses, In. Permission required for reproducton or display.

Pull-up Circuit

@ One (parallel) branch for each row where the
output is 1: each row is an “or-alternative” so
branches are in parallel

@ Each such branch has one transistor in series for
each term in the row
Each term must have the specified value (AND =
series)
= If term is zero, the gate is the input signal
= If termis 1, gate is the negation of input

@ Example on doc-cam

CS270 - Fall Semester 2016 35

Copyight © The ne. P ordisplay.

Pull-down Circuit

@ For every truth table row with a 0 output
= Provide a path from the output to GND
= Connect all the paths in parallel
@ Either design it from scratch like the pull-up circuit

@ Or equivalently, simply construct the complement
of the pull-up circuit

@ Follows from DeMorgan’s Laws

CS270 - Fall Semester 2016 36

‘Copyright © The McGraw-Hil Comparies, Inc, Permission requied forreproducton or disply.

Recursive Rules for Complement

@ The complement of n SPC with a single transistor
is the complement of the transistor

@ If an SPC is the series composition of two (or
more) SPC’s, X and Y
= Its complement is the parallel connection of the

individual complements of X and Y

@ If SPC is the parallel composition of two (or maore)

SPC’s, Xand Y

= Its complement is the serial connection of the individual
complements of X and Y

CS270 - Fall Semester 2016 37

10

