Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Introduction to Computing Systems:

From Bits and Gates to C and Beyond 2nd Edition

Yale N. Patt Sanjay J. Patel

Original slides from Gregory Byrd, North Carolina State University Modified slides by Chris Wilcox, Andres Calderon J., Sanjay Rajopadhye, CSU

CS270 - Fall Semester 2016

copyright © The McGraw-Hill Companies. Inc. Permission required for reproduction or display.

Lecture Goals

- Review course logistics
 - Assignments
 - Policies
 - Organization
 - Grading Criteria
- Introduce key concepts
 - Role of Abstraction
 - Software versus Hardware
 - Universal Computing Devices
 - Layered Model of Computing

CS270 - Fall Semester 2016

emester 2016

pyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or

Logistics

Lectures: See syllabusStaff: See syllabus

Recitations: See syllabus
Help desks: See syllabus
Office hours: See syllabus
Materials on the website:

http://www.cs.colostate.edu/~cs270

Piazza: access through Canvas

CS270 - Fall Semester 2016

Assignments

Assignments are posted on website:

- Weekly assignments (mostly) alternate between written and programming assignments.
- Homework assignments: submission mode and deadline varies.
- Programming assignments are submitted in electronic form Sun. at 10pm.
- Late submission varies depending on the difficulty of the assignment.
- Regrading: through Piazza (see syllabus).

CS270 - Fall Semester 2016

Policies

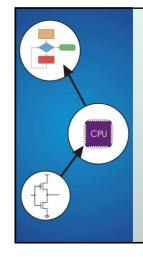
- Grading Criteria
 - Assignments (35%)
 - Recitations (10%)
 - Peer Instruction (5%)
 - Two Midterm Exams (15% each)
 - Final Exam (20%)
- Late Policy
 - On-time = full points, late submission= 20% penalty
- Academic Integrity
 - http://www.cs.colostate.edu/~info/student-info.html
 - Do your own work
 - Be smart about Internet resources

CS270 - Fall Semester 2016

Organization

- ◆ 1/3 computer hardware: numbers and bits, transistors, gates, digital logic, state machines, von Neumann model, instruction sets, LC-3 architecture
- 1/3 assembly code: instruction formats, branching and control, LC-3 programming, subroutines, memory model (stack)
- 1/3 C programming: data types, language syntax, variables and operators, control structures, functions, pointers and arrays, memory model, recursion, I/O, data structures

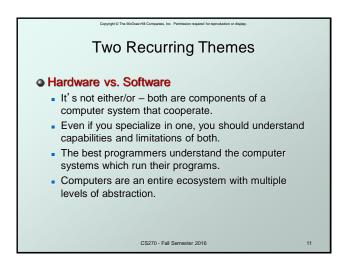
CS270 - Fall Semester 2016

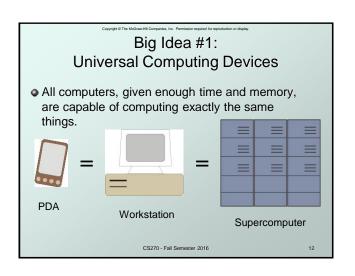

6

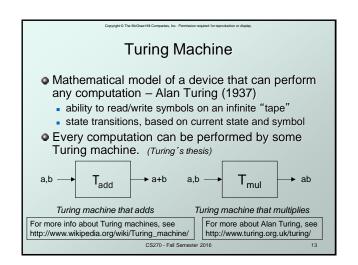
Grading Criteria

How to be successful in this class:

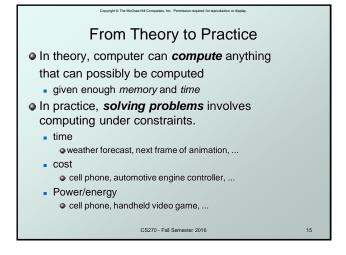
- 1) Attend all classes and recitations, info will presented that you can't get anywhere else.
- Do all the homework assignments, ask questions (early! (but not too early!)) if you run into trouble.
- 3) Take advantage of lab sessions where help is available from instructors.
- Read the textbook, work through the end of chapter problems.

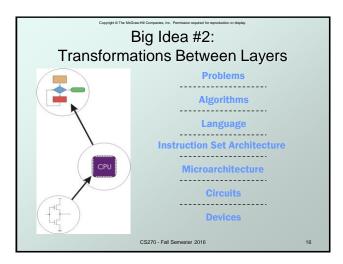

CS270 - Fall Semester 2016

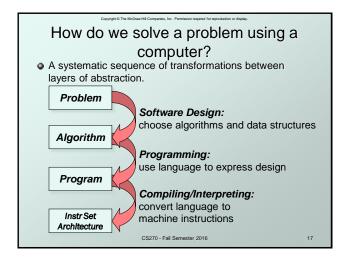


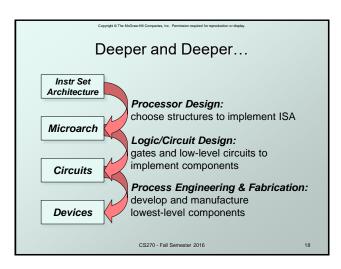

Chapter 1
Welcome
Aboard

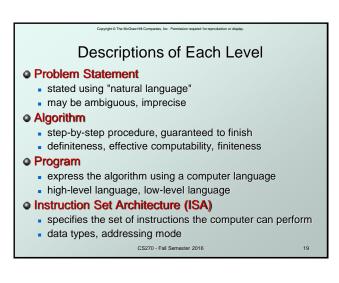
Introduction to the World of Computing Computer: electronic genius? No! Electronic idiot! Does exactly what we tell it to, nothing more. Goal of the course: You will be able to write programs in C You will understand how a computer works (what's going on under the hood). Textbook Approach: From the bottom up (we will use mostly a top-down approach). Bits → Transistors → Gates → Logic → Processor → Instructions → Assembly Code → C Programming

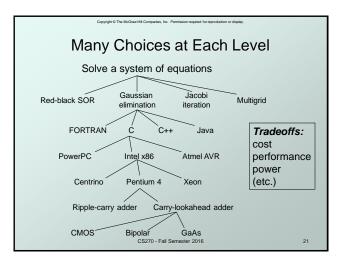


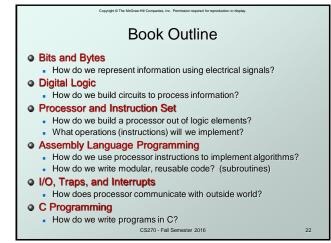












Descriptions of Each Level (cont.) Microarchitecture detailed organization of a processor implementation different implementations of a single ISA Logic Circuits combine basic operations to realize microarchitecture many different ways to implement a single function (e.g., addition) Devices properties of materials, manufacturability

