CS270 Recitation 11 "Designing an Incrementer in Logisim"

Goals

To understand how to design and debug "fat" combinatorial circuits using Logisim. Fat circuits are those that operate at the "word-level" rather than at the level of a single bit.

The Assignment

You are going to design, implement and test an 8-bit incrementer.
This is similar to the circuit that's inside the +1 box in the LC- 3 datapath and produces the value $\mathrm{PC}+1$ (the incrementer in the LC-3 uses 16 bits). It can easily be implemented as an adder, one of whose inputs is hardwired to the integer 1 , but we want you to build it from scratch. There are a number of steps, and logisim is only the last one.

1. First understand the algorithm that your circuit is to implement.

In order to add 1 to any (2 's complement or unsigned) binary integer, we use the grade school algorithm: work our way from the least significant bit (LSB) to the left towards the MSB. Work out three examples on paper. Show them to your TA.
2. Decompose it into a function for each bit in the input, and write their truth tables.

The input at any bit position is an input bit A , and a carry bit C_{in}, and the result of the addition at that position is an output bit S, and a carry bit $\mathrm{C}_{\text {out. }}$ So, our first step is to write a truth table that specifies these two outputs as a function of the two inputs. Since there are two inputs and two outputs, your truth table should have 4 rows and 4 columns. Show it to your TA.

Do not proceed to step 3 before a TA has checked off your truth table.
3. Now implement and test it in logisim
a. Make a subdirectory called R11 for this recitation, where all files should reside.
b. We want your design to be modular. So first implement a (sub) circuit called Incrlbit which is in charge of incrementing one single bit.
c. Build your complete incrementer circuit by making eight copies of the Incr 1bit sub-circuit and connecting them appropriately. Use splitters (look it up in the user guide) so that you specify an 8 -bit bundle of wires as the input and a similar 8 -bit bundle of wires as the output.
d. What is the input to the LSB?
e. What is the output from the MSB?
f. Finally, note that the bit-0 sub-circuit can be simplified. Design another subcircuit called IncrBit0 and use that instead of Incr1Bit for the LSB.

