CS270 Midterm Fall 2014

I, the undersigned, do hereby affirm that the work contained in this exam is solely my own, an results were achieved by cheating. This includes using automated tools to generate answers, s answers off the web, etc. Please do the work yourself.	
Name (printed legibly)	
Signature	-
9-digit Student ID	
(printed legibly)	

Grading

Section	Possible	Actual Points
Section	Points	Points
Number	30	
Representation	30	
Floating Point	15	
Numbers	13	
Combinational	20	
Logic	20	
Sequential	10	
Logic	10	
LC-3	1.5	
Architecture	15	
C Programming	10	
C Programming	10	
Total	100	

Pro	blems 1-10 are about number representation and number conversion, no calculators allowed!
1)	How many bits in a byte and bytes in a 64-bit word? (2 points)
2)	How many bits are required to represent 1015 unique patterns? How many are left over? (2 points)
3)	What is the binary equivalent of the hexadecimal number 0xABCD0123? (2 points)
0b	
4)	What is the hexadecimal equivalent of the binary number 0b1100010110011111? (2 points)
0x	
5)	What is the decimal equivalent of the binary number 0b01110101? (2 points)
6)	What is the binary equivalent of the decimal number $256 + 64 + 32 + 16 + 2 + 1 = 371$? (2 points)
0b	
7)	What is the (fixed-point) binary equivalent of the decimal number 5.625? (2 points)

8)	What is the (fixed point) decimal equivalent of the binary number 1110.011? (2 points)

12) Show the result of the following logical operations in hexadecimal. Space is provided for binary values that may help you solve the problem but will not be graded (3 points)

$$= 0x \qquad \qquad = 0x \qquad \qquad = 0x$$

HINT: 1 sign bit, 8 exponent bits, biased by 127, and 23 fractional	HINT: 1 sign bit, 8 exponent bits, biased by 127, and 23 fractional bits, with an implicit 1.				
13) What are the binary values of the fields of the IEEE 754 single-precision format of 12.25? (3 points)					
Sign =					
Exponent:					
Mantissa: 1					
14) What is the decimal number represented by 0b 0 10000011 13	100000000000000000000000000? (4 points)				
Show your work for partial credit:					
15) Fill in the values below for each step to add the floating point	numbers $x = 2.25$ and $y = 4.125$. (8 points)				
x = 2.25 = 0x40100000, $y = 4.125 = 0x40840000$, sum = $x + y$					
What is the (unbiased) exponent of x, in decimal?					
What is the (unbiased) exponent of y, in decimal?					
What is the mantissa of x in binary, with the implicit 1 shown?	1				
What is the mantissa of y in binary, with the implicit 1 shown?	1				
What is the mantissa of the sum after normalization?	1				
What is the (unbiased) exponent of the sum, after normalization?					
What is the hexadecimal value of the sum?	0x				
What is the decimal value of the sum?					

Problems 13-15 should be answered based on the IEEE 754 single-precision format.

Problems 16-20 cover transistors, gates, and basic circuits.

16) Analyze the transistor circuits shown below and complete the truth table. Hint: A p-type transistor is closed with 0 input and open with 1 input, an n-type transistor the opposite. (4 points)

A	В	T1 (p-type)	T2 (p-type)	T3 (n-type)	T4 (n-type)	C
0	0	Closed		Open	Open	
0	1		Open			
1	0		Closed			
1	1	Open		Closed	Closed	

17) How many select lines are needed for a 16 to 1 multiplexer? (2 points)

18) For a 4-bit adder, what are the outputs for the inputs 0x8 and 0x9, if the CarryIn bit is 1. (4 Points)

Sum = 0x______, Carryout = _____

19) Analyze the combination logic shown below and complete the truth table. (6 Points)

A	В	X	Y	Z
0	0			
0	1			
1	0			
1	1			

20) Connect the output of the appropriate AND gates to the OR gates to fulfill the truth table below. (4 points)

A	В	X	Y
0	0	1	0
0	1	0	0
1	0	0	1
1	1	1	1

Problems 21 and 22 cover sequential logic and state machines.

21) Fill in the truth table for the D latch circuit show below. (5 points)

Data (D)	Enable (EN)	Previous State	Output (Q)
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

22) If the state machine below starts in State 0 and is sent the input pattern 92, 44, 44, 11, 82, 29, 65, 12, what is the output and final state? (5 points)

Final State:

Problems 2	23-27 are related to LC-3 architecture and LC-3 assembly code.
·	re the address space, word size, and number of registers on the LC-3 computer? (3 points)
	ate the following instruction into a hexadecimal value: AND R3,R6,#5 (3 points)
0x	
25) Transl	ate the following hexadecimal value into an assembly instruction: 0x94FF (3 points)
26) What i	is in the PC offset field of the following LC-3 branch instruction? (3 points) BRnp LABEL
	AND R2,R2,#0
LABEL	AND R3,R3,#0 .FILL x1234
PC offset =	=
27) What a	re the values in R0, R1, and R2 after the following code executes? (3 points)
	BR MAIN
DATA0	.FILL xABCD
DATA1	.FILL x1234
DATA2	.FILL xFFF6
MAIN	LD R0, DATA0
	LD R1, DATA1
	LD R2, DATA2
	BRp NEXT1
	AND R0,R0,#0
NEXT1	NOT R0,R0
	BRp NEXT2
	AND R2,R2,xF
NEXT2	ADD R1,R2,R1
	HALT
$R0 = 0x_{\underline{}}$	
$R1 = 0x_{\underline{}}$	
R2 = 0x	

Questions 28-32 are related to the C program shown below, fill in what is printed. Note that the questions are in order of execution. (4 points each)

#include <stdio.h>

```
void doubleArray(int array[], int length) {
     for (int i = 0; i < length-2; i++) {
           array[i] += array[i];
     }
     length += 5;
     printf("%d\n", length);
                                 // Question 29
}
int main(int argc,char *argv[]) {
     int integers [6] = \{3, 4, 5, 6, 7, 8\};
     int length = 6;
     printf("%d\n", integers[4]);
                                       // Question 28
     doubleArray(integers, length);
     printf("\%d\n", *(integers + 3));
                                 // Question 30
     printf("\%d\n", *(integers + 4));
                                 // Question 31
     printf("%d\n", length);
                                  // Question 32
}
28)_____
29)_____
30)_____
31)
```


Figure A.2 Format of the entire LC-3 instruction set. Note: + indicates instructions that modify condition codes

Scratch paper, please do no	ot put any answers here	e unless you reference	this page in an answ	er!