Recitation 13
PA6 Help

Today we're going to inspect how the code we've given you for PA6 models the LC3, as well as
revisit a few debugger features that will make more sense now that we've seen stacks and
pointers.

(The file below includes a few source files which were already compiled into the PAG6 file Ic3sim.a for
you, but having them allows you to see more in the debugger. If you want to get the additional files
in your PA6 directory for later use, you can run "tar -xf ~cs270/1c3tools/simSrc.tar")

wget http://www.cs.colostate.edu/~cs270/.Falll3/recitations/R13/R13.tar.gz
tar -xzf Rl13.tar.gz

cd R13

ddd mysim

(note: ddd was originally written in an era before current GUI behavior became a common
convention. As a result, you must hover the mouse cursor over whatever field you wish to type
into)

File->Open Source... "logic.c”

Find the function logic read memory, right click on it and choose "Break at
logic_read_memory"

Click "Run" in the DDD Command Tool (the separate window with only buttons)
[t should stop at the breakpoint.

Now some setup stuff to have the debugger interpret the stack memory for us (including
stack/local variables and arguments)

In the ddd GUI, do:

Status->Backtrace... (this will bring up a window showing you the stack)
Data->Display Local Variables
Data->Display Arguments

You should see one local variable and one argument in the display area. You should also see in the
backtrace (stack) window a series of function calls starting with main and leading to

logic read memory. Ifyou click on each stack frame (activation record) the source code
window will show you what the PC was in that frame when it called the next function in the stack.

Now click "Step"” (in the Command Tool) until you step into the function hardware load MAR.
Notice what happened to the backtrace window and the Locals and Args displays. Now examine



that function and observe that it assigns to a variable, reg MAR (it is declared as static (i.e.
limited to that file), so your PA6 code must use the hardware load MAR function to change it).
Right click on reg MAR and choose "Display reg_ MAR". Do the same for lc3_BUS. Double click
on the hex value in the Ic3_BUS display to see what it points to.

Scroll up in this file (hardware.c) and find the declarations for all the other variables used to
model LC3 registers. Right click and choose display for each of the following:

Ic3_registers
reg PC
reg_IR
reg_PSR
reg_ MDR

Continue stepping until you reach the end of 1logic read memory (butonce you step inside
the function hardware memory enable, click Finish to tell it to run to the completion of the
current function).

Now do Source->Breakpoints... and disable the 1ogic read memory brakepoint.

Next scroll down in 1ogic. c (the main DDD window should say logic.c in the title bar) and set a
breakpointon logic fetch instruction.

Click "Cont" (in the Command Tool) to continue execution till the next breakpoint. You'll notice
lc3sim does in fact continue with normal operations and presents an Ic3sim prompt inside the ddd
window. Type step atthe (1c3sim) prompt to tell the running lc3sim simulation to run one
instruction. You should see that Ic3sim is now stopped at the breakpoint. Double click on the
hexadecimal pointer value shown for the "inst" argument in the Args display.

It's impractical to display the 65,536 element Ic3_memory array in the display area the same way
we can with the 8 element Ic3_register file, so we'll use the gdb prompt instead. Type:

p lc3_memory|[5]
at the (gdb) prompt in the bottom window to see what's at address 5.

Show your instructor your simulation window or File->Print Graph... (choose to print to a .ps file)
and email them this file.



