

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Computing Layers

Problems
Algorithms
Language
Instruction Set Architecture

Devices

Combinational vs. Sequential

- Combinational Circuit

- does not store information, always gives the same output for a given set of inputs
- example: adder always generates sum and carry, regardless of previous inputs
- Sequential Circuit
- stores information, output depends on stored info (state) plus input
- so a given input might produce different outputs, depending on the stored information
- useful for building "memory" elements and "state machines"
- example: ticket counter

R-S Latch: Simple Storage Element

- R is used to "reset" or "clear" the element - set it to zero.
- S is used to "set" the element - set it to one.

- If both R and S are one, output could be either zero or one.
- "quiescent" state -- holds its previous value
- if a is $1, b$ is 0 , and vice versa

Clearing the R-S latch

- Suppose we start with output $=1$, then change R to zero.

Output changes to zero.

Then set $R=1$ to "store" value in quiescent state.

Setting the R-S Latch

- Suppose we start with output $=0$, then change S to zero.

Output changes to one.

Then set $S=1$ to "store" value in quiescent state.

R-S Latch Summary

- $\mathrm{R}=\mathrm{S}=1$
- hold current value in latch
- $S=0, R=1$
- set value to 1
- $R=0, S=1$
- set value to 0
- $\mathbf{R}=\mathbf{S}=0$
- both outputs equal one
- final state determined by electrical properties of gates
- Don't do it!

Gated D-Latch

- Two inputs: D (data) and WE (write enable)
- when $W E=1$, latch is set to value of D

$$
\mathrm{S}=\mathrm{NOT}(\mathrm{D}), \mathrm{R}=\mathrm{D}
$$

- when $W E \equiv 0$, latch holds previous value

$$
S=R=1
$$

Register

- A register stores a multi-bit value.
- We use a collection of D-latches, all controlled by a common WE.

Representing Multi-bit Values

- Number bits from right (0) to left ($n-1$)
- just a convention -- could be left to right, but must be consistent
- Use brackets to denote range:
$\mathrm{D}[\mathbf{I}: \mathbf{r}]$ denotes bit I to bit \mathbf{r}, from left to right
$A=0101001101010101$
$A[14: 9]=101001$
$A[2: 0]=101$
- May also see $A<14: 9>$,
especially in hardware block diagrams.

Memory

- Now that we know how to store bits, we can build a memory - a logical $k \times m$ array of stored bits.

Address Space:
number of locations
(usually a power of 2)

Addressability: number of bits per location (e.g., byte-addressable)

More Memory Details

- Not the way actual memory is implemented!
- fewer transistors, denser, relies on electrical properties
- But the logical structure is very similar.
- address decoder, word select line, word write enable
- Random Access Memory: 2 different types
- Static RAM (SRAM)
- fast, used for caches, maintains data when powered
- Dynamic RAM (DRAM)
- slower but denser, storage decays, must be refreshed
- Non-Volatile Memory: ROM, PROM, Flash

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Memory Bandwidth

- Bandwidth is the rate at which memory can be read or written by the processor.
- Approximately equal to the memory bus size times the speed at which the memory is clocked.
- Examples of bandwidth (from Wikipedia):
- Phone line, Modem, up to 5.6KB/s
- Digital subscriber line, ADSL, up to $128 \mathrm{~KB} / \mathrm{s}$
- Wireless networking, 802.11 g , up to $17.5 \mathrm{MB} / \mathrm{s}$
- Peripheral connection, USB 2.0, 60MB/s
- Digital video, HDMI, up to $1.275 \mathrm{~GB} / \mathrm{s}$
- Computer bus, PCI Express, up to 25.6GB/s
- Memory chips, SDRAM, up to 52GB/s

State Machine

- Another type of sequential circuit
- Combines combinational logic with storage
- "Remembers" state, and changes output (and state) based on inputs and current state

Combinational vs. Sequential

- Two types of "combination" locks

4	1	8	4

Combinational
Success depends only on the values, not the order in which they are set.

[^0]
State

- The state of a system is a snapshot of all the relevant elements of the system at the moment the snapshot is taken.
Examples:
- The state of a basketball game can be represented by the scoreboard: number of points, time remaining, possession, etc.
- The state of a tic-tac-toe game can be represented by the placement of $X^{\prime} s$ and $O^{\prime} s$ on the board.

State of Sequential Lock

Our lock example has four different states, labelled A-D:
A: The lock is not open, and no relevant operations have been performed.
B : The lock is not open, and the user has completed the $\mathrm{R}-13$ operation.
C : The lock is not open, and the user has completed R-13, followed by L-22.
D: The lock is open.

State Diagram

- Shows states and actions that cause a transition between states.

Finite State Machine

- A system with the following components:

1. A finite number of states
2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions
5. An explicit specification of what determines each external output value

- Often described by a state diagram.
- Inputs trigger state transitions.
- Outputs are associated with each state (or with each transition).

The Clock

- Frequently, a clock circuit triggers transition from one state to the next.

- At the beginning of each clock cycle, state machine makes a transition, based on the current state and the external inputs.
- Not always required. In lock example, the input itself triggers a transition.

Implementing a Finite State Machine

- Combinational logic
- Determine outputs and next state.
- Storage elements
- Maintain state representation.

Storage

- Each master-slave flipflop stores one state bit.
- The number of storage elements (flipflops) needed is determined by the number of states (and the representation of each state).
- Examples:
- Sequential lock
-Four states - two bits
- Basketball scoreboard
- 7 bits for each score, 5 bits for minutes, 6 bits for seconds, 1 bit for possession arrow, 1 bit for half, ...

Complete Example

- A blinking traffic sign
- No lights on
- 1 \& 2 on
- 1, 2, 3, \& 4 on
- $1,2,3,4$, \& 5 on
- (repeat as long as switch is turned on)

Traffic Sign State Diagram

Transition on each clock cycle.

Traffic Sign Truth Tables

Outputs
(depend only on state: $\mathrm{S}_{1} \mathrm{~S}_{0}$)

Next State: $\mathrm{S}_{1}{ }^{\prime} \mathrm{S}_{0}{ }^{\prime}$ (depend on state and input)

[^0]: Sequential Success depends on the sequence of values (e.g, R-13, L-22, R-3).

