
1

Chapter 3
Digital Logic
Structures

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Fall 2013 - Colorado State University

Computing Layers

Problems

Language

Instruction Set Architecture

Microarchitecture

Circuits

Devices

Algorithms

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Fall 2013 - Colorado State University

Combinational Logic
! Cascading set of logic gates

What is the truth table?

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Fall 2013 - Colorado State University

Truth Table (from circuit)
! Truth table for circuit on previous slide

A B C W X Y Z
0 0 0 0 0 0 1
0 0 1 0 1 1 1
0 1 0 0 1 1 1
0 1 1 0 1 1 1
1 0 0 0 0 0 1
1 0 1 0 1 1 1
1 1 0 1 1 0 0
1 1 1 1 1 0 0

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Fall 2013 - Colorado State University

Logisim Simulator
! Logic simulator: allows interactive design and

layout of circuits with AND, OR, and NOT gates
! Simulator web page (linked on class web page)
 http://ozark.hendrix.edu/~burch/logisi
! Overview, tutorial, downloads, etc.
! Windows or Linux operating systems
! Logisim demonstration

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Fall 2013 - Colorado State University

Decoder
! n inputs, 2n outputs

n  exactly one output is 1 for each possible input pattern

2-bit
decoder

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Fall 2013 - Colorado State University

Multiplexer (MUX)
! n-bit selector and 2n inputs, one output

n  output equals one of the inputs, depending on
selector

4-to-1 MUX

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Fall 2013 - Colorado State University

Full Adder
! Add two bits and carry-in,

produce one-bit sum and carry-out.

A B Cin S Cout

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Fall 2013 - Colorado State University

Four-bit Adder

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Fall 2013 - Colorado State University

Logical Completeness
! Can implement ANY truth table with combo of

AND, OR, NOT gates.
A B C D
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 0

1. AND combinations
that yield a "1" in the
truth table.

2. OR the results
of the AND gates.

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Fall 2013 - Colorado State University

Truth Table (to circuit)
! How do we design a circuit for this?

A B C X Y
0 0 0 1 0
0 0 1 0 1
0 1 0 1 0
0 1 1 0 1
1 0 0 0 0
1 0 1 0 1
1 1 0 1 0
1 1 1 1 1

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Fall 2013 - Colorado State University

Programmable Logic Array
! Front end is a

input decode
! Back end

selects outputs
! Not necessarily

minimal circuit!
! Logic arrays are

prebuilt

7

Chapter 13
Control Structures

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C Wilcox, S Rajopadhye
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Fall 2013 - Colorado State University

Control Structures
! Conditional

n  making a decision about which code to execute,
based on evaluated expression

if
if-else
switch

! Iteration
n  executing code multiple times, ending based on

evaluated expression
while
for
do-while

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Fall 2013 - Colorado State University

If

if (condition)
 statement;//action condition

action

T

F

Condition is a C expression,
which evaluates to TRUE (non-zero) or FALSE (zero).
Action is a C statement,
which may be simple or compound (a block).

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Fall 2013 - Colorado State University

Example If Statements

! if (x <= 10)
 y = x * x + 5;

! if (x <= 10) {
 y = x * x + 5;
 z = (2 * y) / 3;
}

! if (x <= 10)
 y = x * x + 5;

 z = (2 * y) / 3;

only first statement is
conditional;

second statement is
always executed

compound statement;
both executed if x <= 10

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Fall 2013 - Colorado State University

More If Examples
! if (0 <= age && age <= 11)
 kids += 1;

! if (month == 4 || month == 6 ||
 month == 9 || month == 11)
 printf(“The month has 30 days.\n”);

! if (x = 2)
 y = 5;

 A common programming error (= instead ==), not caught by
 compiler because it is syntactically correct.

always true,
so action is always executed!

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Fall 2013 - Colorado State University

If s Can Be Nested
if (x == 3)
 if (y != 6)
 {
 z = z + 1;
 w = w + 2;
 }

if ((x == 3) && (y != 6))
{
 z = z + 1;
 w = w + 2;
}

is the same as...

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS270 - Fall 2013 - Colorado State University

If-else

! if (condition)
 action_if;
else
 action_else;

condition

action_if action_else

T F

Else allows choice between
two mutually exclusive actions without re-testing condition.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS270 - Fall 2013 - Colorado State University

Matching Else with If
! Else is always associated with closest unassociated if.

if (x != 10)
 if (y > 3)
 z = z / 2;
 else
 z = z * 2;

if (x != 10) {
 if (y > 3)
 z = z / 2;
 else
 z = z * 2;
}

is the same as...
if (x != 10) {
 if (y > 3)
 z = z / 2;
}
else
 z = z * 2;

is NOT the same as...

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS270 - Fall 2013 - Colorado State University

Chaining If s and Else s
if (month == 4 || month == 6 ||
 month == 9 || month == 11)
 printf(“Month has 30 days.\n”);

else if (month == 1 || month == 3 ||
 month == 5 || month == 7 ||
 month == 8 || month == 10 ||
 month == 12)
 printf(“Month has 31 days.\n”);

else if (month == 2)
 printf(“Month has 28 or 29 days.\n”);
else
 printf(“Don’t know that month.\n”);

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS270 - Fall 2013 - Colorado State University

Iteration 1: while

while (test)
 loop_body;

test

loop_body

T

F

Executes loop body as long as
test evaluates to TRUE (non-zero).

Note: Test is evaluated before executing loop body.

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS270 - Fall 2013 - Colorado State University

Infinite Loops

! The following loop will never terminate:
x = 0;
while (x < 10)
 printf(“%d ”, x);

! Loop body does not change condition,
so test never fails.

! This is a common programming error
that can be difficult to find.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24 CS270 - Fall 2013 - Colorado State University

For

for (init; end-test; update)
 statement

init

test

loop_body

re-init

F

T
Executes loop body as long as
test evaluates to TRUE (non-zero).
Initialization and re-initialization
code includedin loop statement.

Note: Test is evaluated before executing loop body.

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25 CS270 - Fall 2013 - Colorado State University

Example For Loops

/* -- what is the output of this loop? -- */
for (i = 0; i <= 10; i ++)
 printf("%d ", i);

/* -- what does this one output? -- */
letter = 'a';
for (c = 0; c < 26; c++)
 printf("%c ", letter+c);

/* -- what does this loop do? -- */
numberOfOnes = 0;
for (bitNum = 0; bitNum < 16; bitNum++) {
 if (inputValue & (1 << bitNum))
 numberOfOnes++;
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26 CS270 - Fall 2013 - Colorado State University

Nested Loops

! Loop body can (of course) be another loop.

/* print a multiplication table */
for (mp1 = 0; mp1 < 10; mp1++) {
 for (mp2 = 0; mp2 < 10; mp2++) {
 printf(“%d\t”, mp1*mp2);
 }
 printf(“\n”);

}
Braces aren’t necessary, but make the code
more readable. Also avoids bugs when editing

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27 CS270 - Fall 2013 - Colorado State University

Another Nested Loop

! The test for the inner loop depends on the
counter variable of the outer loop.

for (outer = 1; outer <= input; outer++) {
 for (inner = 0; inner < outer; inner++) {
 sum += inner;
 }
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28 CS270 - Fall 2013 - Colorado State University

For vs. While

In general:

! For loop is preferred for counter-based loops.
n  Explicit counter variable
n  Easy to see how counter is modified each loop

! While loop is preferred for sentinel-based loops.
n  Test checks for sentinel value.

! Either kind of loop can be expressed as the
other, so it’s really a matter of style and
readability.

15

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

29 CS270 - Fall 2013 - Colorado State University

Do-While

do
 loop_body;

while (test);

loop_body

test
T

F
Executes loop body as long as
test evaluates to TRUE (non-zero).

Note: Test is evaluated after executing loop body. So
loop_body is executed at least once

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

30 CS270 - Fall 2013 - Colorado State University

Problem Solving in C

! Stepwise Refinement
n  as covered in Chapter 6

! ...but can stop refining at a higher level of
abstraction.

! Same basic constructs
n  Sequential -- C statements
n  Conditional -- if-else, switch
n  Iterative -- while, for, do-while

16

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

31 CS270 - Fall 2013 - Colorado State University

Problem 1: Calculating Pi
! Calculate π using its series expansion.

User inputs number of terms.

 +
+

−++−+−= −

12
4)1(

7
4

5
4

3
44 1

n
nπ

Start

Initialize

Get Input

Evaluate
Series

Output
Results

Stop

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

32 CS270 - Fall 2013 - Colorado State University

Pi: 1st refinement
Start

Initialize

Get Input

Evaluate
Series

Output
Results

Stop

Initialize
iteration count

count<terms

Evaluate
next term

count = count+1

for loop

F

T

17

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

33 CS270 - Fall 2013 - Colorado State University

Pi: 2nd refinement

Initialize
iteration count

count<terms

Evaluate
next term

count = count+1

F

T

count
is odd

subtract term add term

add term

if-else

F T

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

34 CS270 - Fall 2013 - Colorado State University

Pi: Code for “Evaluate next Term”

for (count=0; count < numOfTerms; count++) {
 if (count % 2) {
 /* odd term, subtract */
 pi -= 4.0 / (2 * count + 1);
 }
 else {

 /* even term, add */
 pi += 4.0 / (2 * count + 1);
}

Note: Code in text is slightly different,
but this code corresponds to equation.

18

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

35 CS270 - Fall 2013 - Colorado State University

Pi: Complete Code
#include <stdio.h>
int main(int argc, char *argv[]) {

 double pi = 0.0;
 int numOfTerms, count;

 printf("Number of terms (must be 1 or larger) : ");
 scanf("%d", &numOfTerms);

 for (count=0; count < numOfTerms; count++) {
 if (count % 2) {
 pi -= 4.0 / (2 * count + 1); // odd term, subtract

 }
 else {
 pi += 4.0 / (2 * count + 1); // even term, add
 }

 }
 printf("The approximate value of pi is %f\n", pi);
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

36 CS270 - Fall 2013 - Colorado State University

Problem 2: Finding Prime Numbers
! Print all prime numbers less

than 100.
n  A number is prime by definition

if its only divisors are 1 and
itself.

n  All non-prime numbers less
than 100 have a divisor
between 2 and 10.

Start

Stop

Initialize

Print primes

19

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

37 CS270 - Fall 2013 - Colorado State University

Primes: 1st refinement

Start

Stop

Initialize

Print primes

Initialize
num = 2

num < 100

Print num
if prime

num = num + 1

F

T

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

38 CS270 - Fall 2013 - Colorado State University

Primes: 2nd refinement
Initialize
num = 2

num < 100

Print num
if prime

num = num + 1

F

T

Divide num by
2 through 10

no
divisors?

Print num

F

T

20

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

39 CS270 - Fall 2013 - Colorado State University

Primes: 3rd refinement

Divide num by
2 through 10

no
divisors?

Print num

F

T

Initialize
divisor = 2

divisor <= 10

Clear flag if
num%divisor > 0

divisor =
divisor + 1

F

T

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

40 CS270 - Fall 2013 - Colorado State University

Primes: Using a Flag Variable

! To keep track of whether number was divisible,
we use a "flag" variable.
n  Set prime = TRUE, assuming that number is prime.
n  If a divisor divides number evenly, set prime = FALSE.

 Once it is set to FALSE, it stays FALSE.
n  After all divisors are checked, number is prime if

the flag variable is still TRUE.
! Use macros to help readability.
 #define TRUE 1
 #define FALSE 0

21

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

41 CS270 - Fall 2013 - Colorado State University

Primes: Complete Code
#include <stdio.h>
#define TRUE 1
#define FALSE 0

 int main (int argc, char*argv[]) {
 int num, divisor, prime;

 /* start with 2 and go up to 100 */
 for (num = 2; num < 100; num ++) {

 prime = TRUE; /* assume prime */

 /* test whether divisible by 2 through 10 */
 for (divisor = 2; divisor <= 10; divisor++)
 if (((num % divisor) == 0) && (num != divisor))
 prime = FALSE; /* not prime */

 if (prime) /* if prime, print it */
 printf("The number %d is prime\n", num);
 }
}

Optimization: Could put
a break here to avoid some work.

(Section 13.5.2)

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

42 CS270 - Fall 2013 - Colorado State University

Switch

switch (expression) {
case const1:
 action1; break;
case const2:
 action2; break;
default:
 action3;

}

evaluate
expression

= const1?

= const2?

action1

action2

action3

T

T
F

F

Alternative to long if-else chain.
If break is not used, then
case "falls through" to the next.

22

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

43 CS270 - Fall 2013 - Colorado State University

Switch Example
/* same as month example for if-else */
switch (month) {

 case 4:
 case 6:
 case 9:
 case 11:
 printf(“Month has 30 days.\n”);
 break;
 case 1:
 case 3:
 …
 printf(“Month has 31 days.\n”);
 break;

 case 2:
 printf(“Month has 28 or 29 days.\n”);
 break;
 default:
 printf(“Don’t know that month.\n”);

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

44 CS270 - Fall 2013 - Colorado State University

More About Switch

! Case expressions must be constant.
 case i: /* illegal if i is a variable */

! If no break, then next case is also executed.
 switch (a) {
 case 1:
 printf(“A”);
 case 2:
 printf(“B”);
 default:
 printf(“C”);
 }

If a is 1, prints “ABC”.
If a is 2, prints “BC”.

Otherwise, prints “C”.

