
1

Chapter 16
Pointers and Arrays

Original slides from Gregory Byrd, North
Carolina State University

Modified slides by C. Wilcox, S. Rajopadhye
Colorado State University

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

2 CS270 - Fall 2013 - Colorado State University

Pointers and Arrays
! We’ve seen examples of both of these

in our LC-3 programs; now we’ll see them in C.
! Pointer

n  Address of a variable in memory
n  Allows us to indirectly access variables

•  in other words, we can talk about its address
rather than its value

! Array
n  A list of values arranged sequentially in memory
n  Example: a list of telephone numbers

n  Expression a[4] refers to the 5th element of the array a

2

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

3 CS270 - Fall 2013 - Colorado State University

Address vs. Value
! Sometimes we want to deal with the address

of a memory location,
rather than the value it contains.

! Recall example from Chapter 6:
adding a column of numbers.

n  R2 contains address of first location.
n  Read value, add to sum, and

increment R2 until all numbers
have been processed.

! R2 is a pointer -- it contains the
address of data we’re interested in.

x3107
x2819
x0110
x0310
x0100
x1110
x11B1
x0019

x3100

x3101

x3102

x3103

x3104

x3105

x3106

x3107

x3100 R2

address

value

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

4 CS270 - Fall 2013 - Colorado State University

Another Need for Addresses

! Consider the following function that’s supposed
to swap the values of its arguments.

void Swap(int firstVal, int secondVal)
{
 int tempVal = firstVal;
 firstVal = secondVal;
 secondVal = tempVal;

}

3

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

5 CS270 - Fall 2013 - Colorado State University

Executing the Swap Function

firstVal
secondVal
valueB
valueA

3
4
4
3

R6

before call

tempVal

firstVal
secondVal
valueB
valueA

3

4
3
4
3

R6

after call

These values
changed...

...but these
did not.

Swap needs addresses of variables outside its own
activation record.

Swap

main

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

6 CS270 - Fall 2013 - Colorado State University

Pointers in C
! C has explicit syntax for representing addresses

– we can talk about and manipulate pointers
as variables and in expressions.
n  Declaration

 int *p; /* p is a pointer to an int */
 float *p; /* p is a pointer to an float */

! A pointer in C points to a particular data type:
int*, double*, char*, etc.
n  Operators

 *p -- returns the value pointed to by p
 &z -- returns the address of variable z

4

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 CS270 - Fall 2013 - Colorado State University

Example

int i;
int *ptr;

i = 4;
ptr = &i;
*ptr = *ptr + 1;

store the value 4 into the memory location
associated with i

store the address of i into the
memory location associated with ptr

read the contents of memory
at the address stored in ptr

store the result into memory
at the address stored in ptr

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

8 CS270 - Fall 2013 - Colorado State University

Example: LC-3 Code
! ; i is 1st local (offset 0), ptr is 2nd (offset -1)
; i = 4;
 AND R0,R0,#0 ; clear R0
 ADD R0,R0,#4 ; put 4 in R0
 STR R0,R5,#0 ; store in I
; ptr = &i;
 ADD R0,R5,#0 ; R0 = R5 + 0 (&i)
 STR R0,R5,#-1 ; store in ptr
; *ptr = *ptr + 1;
 LDR R0,R5,#-1 ; R0 = R5 – 1 (ptr)
 LDR R1,R0,#0 ; load contents (*ptr)
 ADD R1,R1,#1 ; *ptr += 1
 STR R1,R0,#0 ; store contents (*ptr)

5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

9 CS270 - Fall 2013 - Colorado State University

Pointers as Arguments

! Passing a pointer into a function allows the
function to read/change memory outside its
activation record.

void NewSwap(int *firstVal, int *secondVal)
{
int tempVal = *firstVal;
*firstVal = *secondVal;
*secondVal = tempVal;

}

Arguments are
integer pointers.
Caller passes addresses
of variables that it wants
function to change.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

10 CS270 - Fall 2013 - Colorado State University

Passing Pointers to a Function

! main() wants to swap the values of valueA and
valueB, so it passes the addresses to NewSwap:

NewSwap(&valueA, &valueB);
! Code for passing arguments:
 ADD R0,R5,#-1 ; &valueB
 ADD R6,R6,#-1 ; push
 STR R0,R6,#0
 ADD R0,R5,#0 ; &valueA
 ADD R6,R6,#-1 ; push
 STR R0,R6,#0

tempVal

firstVal
secondVal
valueB
valueA

xEFFA
xEFF9
4
3

xEFFD

R6

R5

6

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

11 CS270 - Fall 2013 - Colorado State University

Code Using Pointers

! Inside the NewSwap routine
; int tempVal = *firstVal;
 LDR R0,R5,#4 ; R0=xEFFA
 LDR R1,R0,#0 ; R1=M[xEFFA]=3
 STR R1,R5,#0; tempVal=3
; *firstVal = *secondVal;
 LDR R1,R5,#5 ; R1=xEFF9
 LDR R2,R1,#0 ; R1=M[xEFF9]=4
 STR R2,R0,#0 ; M[xEFFA]=4
; *secondVal = tempVal;
 LDR R2,R5,#0 ; R2=3
 STR R2,R1,#0 ; M[xEFF9]=3

tempVal

firstVal
secondVal
valueB
valueA

3

xEFFA
xEFF9
3
4

xEFFD

R6
R5

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

12 CS270 - Fall 2013 - Colorado State University

Null Pointer

! Sometimes we want a pointer that points to
nothing.

! In other words, we declare a pointer, but we’re
not ready to actually point to something yet.
 int *p;
p = NULL; /* p is a null pointer */

! NULL is a predefined macro that contains a
value that a non-null pointer should never hold.
n  NULL =usually equals 0, because address 0 is not a

legal address for most programs on most platforms.

7

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

13 CS270 - Fall 2013 - Colorado State University

Using Arguments for Results
! Pass address of variable where you want result

stored
n  useful for multiple results
n  Example:

•  return value via pointer
•  return status code as function result

! This solves the mystery of why ‘&’ with
argument to scanf:
 scanf("%d ", &dataIn);

read a decimal integer
and store in dataIn

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

14 CS270 - Fall 2013 - Colorado State University

Syntax for Pointer Operators
! Declaring a pointer
 type *var; or type* var;

n  Either of these work -- whitespace doesn’t matter
n  Example: int* (integer pointer), char* (char pointer), etc.

! Creating a pointer
 &var

n  Must be applied to a memory object, such as a variable (not &3)

! Dereferencing
n  Can be applied to any expression. All of these are legal:
*var // (contents of) memory pointed to by var

 **var // (contents of) memory location pointed to

 // by memory location pointed to by var

8

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

15 CS270 - Fall 2013 - Colorado State University

Example using Pointers
! IntDivide performs both integer division and

remainder, returning results via pointers.
n  Returns –1 if divide by zero, else 0

int IntDivide(int x, int y, int *quoPtr, int *remPtr);
main()
{
 int dividend, divisor; /* numbers for divide op */
 int quotient, remainer; /* results */
 int error;

 /* ... Input code removed ... */
 error = IntDivide(dividend, divisor,
 "ient, &remainder);
 /* ... Remaining code removed ... */
}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

16 CS270 - Fall 2013 - Colorado State University

C Code for IntDivide

int IntDivide(int x, int y, int *quoPtr, int *remPtr)
{

 if (y != 0)
 {
 quoPtr = x / y; / quotient in *quoPtr */
 remPtr = x % y; / remainder in *remPtr */
 return 0;

 }
 else
 return –1;

}

9

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

17 CS270 - Fall 2013 - Colorado State University

Arrays
! How do we allocate a group of memory

locations?
n  character string
n  table of numbers

! How about this?
! Not too bad, but…

n  what if there are 100 numbers?
n  how do we write a loop to process each number?

! Fortunately, C gives us a better way -- the array.
 int num[4];

n  Declares a sequence of four integers, referenced by:
num[0], num[1], num[2], num[3].

int num0;
int num1;
int num2;
int num3;

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

18 CS270 - Fall 2013 - Colorado State University

Array Syntax

! Declaration
 type variable[num_elements];

! Array Reference
 variable[index];

all array elements
are of the same type

number of elements must be
known at compile-time

i-th element of array (starting with zero);
no limit checking at compile-time or run-time

10

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

19 CS270 - Fall 2013 - Colorado State University

Array as a Local Variable

! Array elements are allocated
as part of the activation
record.

 int grid[10];
! First element (grid[0])

is at lowest address
of allocated space.

! If grid is first variable
allocated, then R5 will point to
grid[9].

grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

20 CS270 - Fall 2013 - Colorado State University

LC-3 Code for Array References

; x = grid[3] + 1
 ADD R0,R5,#-9 ; R0 = &grid[0]
 LDR R1,R0,#3 ; R1 = grid[3]
 ADD R1,R1,#1 ; plus 1
 STR R1,R5,#-10 ; x = R1
; grid[6] = 5;
 AND R0,R0,#0
 ADD R0,R0,#5 ; R0 = 5
 ADD R1,R5,#-9 ; R1 = &grid[0]
 STR R0,R1,#6 ; grid[6] = R0

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]

R5

11

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

21 CS270 - Fall 2013 - Colorado State University

More LC-3 Code

; grid[x+1] = grid[x] + 2
 LDR R0,R5,#-10; R0 = x
 ADD R1,R5,#-9 ; R1 = &grid[0]
 ADD R1,R0,R1 ; R1 = &grid[x]
 LDR R2,R1,#0 ; R2 = grid[x]
 ADD R2,R2,#2 ; add 2

 LDR R0,R5,#-10; R0 = x
 ADD R0,R0,#1 ; R0 = x+1
 ADD R1,R5,#-9 ; R1 = &grid[0]
 ADD R1,R0,R1 ; R1 = &grid[x+1]
 STR R2,R1,#0 ; grid[x+1] = R2

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

22 CS270 - Fall 2013 - Colorado State University

Passing Arrays as Arguments
! C passes arrays by reference

n  the address of the array (i.e., of the first element)
is written to the function’s activation record

n  otherwise, would have to copy each element
main() {
 int numbers[MAX_NUMS];
 …

 mean = Average(numbers);
 …

}
int Average(int inputValues[MAX_NUMS]) {
 …
 for (index = 0; index < MAX_NUMS; index++)

 sum = sum + indexValues[index];
 return (sum / MAX_NUMS);

}

This must be a constant, e.g.,
#define MAX_NUMS 10

12

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

23 CS270 - Fall 2013 - Colorado State University

A String is an Array of Characters
! Allocate space for a string like any other array:
 char outputString[16];
! Space for string must contain room for terminating

zero.
! Special syntax for initializing a string:
 char outputString[16] = "Result = ";
! …which is the same as:
 outputString[0] = 'R';
 outputString[1] = 'e';
 outputString[2] = 's';

 ...

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

24 CS270 - Fall 2013 - Colorado State University

I/O with Strings

! Printf and scanf use "%s" format character for
string
n  Printf -- print characters up to terminating zero

 printf("%s", outputString);
n  Scanf -- read characters until whitespace,

 store result in string, and terminate with zero
 scanf("%s", inputString);

13

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

25 CS270 - Fall 2013 - Colorado State University

Relationship between Arrays and
Pointers

! An array name is essentially a pointer to the first
element in the array

 char word[10];
 char *cptr;
 cptr = word; /* points to word[0] */
! Difference:

n  Can change the contents of cptr, as in
 cptr = cptr + 1;

! Why? Because the identifier “word” is not a
variable.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

26 CS270 - Fall 2013 - Colorado State University

Correspondence between Ptr and
Array Notation

! Given the declarations on the previous page,
each line below gives three equivalent
expressions:

cptr word &word[0]
(cptr + n) word + n &word[n]
*cptr *word word[0]
*(cptr + n) *(word + n) word[n]

14

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

27 CS270 - Fall 2013 - Colorado State University

Common Pitfalls with Arrays in C
! Overrun array limits

n  There is no checking at run-time or compile-time
to see whether reference is within array bounds.

 int array[10];
 int i;
 for (i = 0; i <= 10; i++) array[i] = 0;
! Declaration with variable size

n  Size of array must be known at compile time.

 void SomeFunction(int num_elements) {
 int temp[num_elements];
 …

}

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

28 CS270 - Fall 2013 - Colorado State University

Pointer Arithmetic
! Address calculations depend on size of elements

n  Our LC-3 code has been assuming a word per element,
e.g., to find 4th element, we add 4 to base address

n  It’s ok, because we’ve only shown code for int and char,
both of which take up one word.

n  If double, we’d have to add 8 to find address of 4th
element (how about byte addressable systems?)

! C does size calculations under the covers,
depending on size of item being pointed to:

 double x[10];
 double *y = x;

 *(y + 3) = 13;

allocates 20 words (2 per element)

same as x[3] -- base address plus 6

