
1

Chapter 10
Memory Model for

Program Execution

Original slides by Chris Wilcox,
Colorado State University

CS270 – Fall 2013 – Colorado State University 2

Problem
How do we allocate memory during the execution of

a program written in C?
! Programs need memory for code (instructions)
and data (global and local variables), etc.
! Modern programming practices encourage many
(reusable) functions, callable from anywhere.
! Some memory can be statically allocated, since
the size and type is known at compile time.
! Some memory must be allocated dynamically, size
and type is unknown at compile time.

2

CS270 – Fall 2013 – Colorado State University 3

Motivation
Why is memory allocation important? Why not just

use a memory manager?
! Allocation affects the performance and memory
usage of every C, C++, Java program.
! Current machines do not have enough registers to
store everything that is required.
! Memory management is too slow and cumbersome
to solve the problem.
! Static allocation of memory resources is too
inflexible and inefficient, as we will see.

CS270 – Fall 2013 – Colorado State University 4

Goals
! What do we care about?

n  Fast program execution
n  Efficient memory usage
n  Maintaining data locality

n  Allowing recursive calls
n  Supporting parallel execution
n  Minimizing resource allocation
Memory should never be allocated for functions

that are not executed!

3

CS270 – Fall 2013 – Colorado State University 5

Function Call
! Consider the following code:

int main (int argc, char *argv[]){
 int a = 10;
 int b = 20;
 c = foo(a, b);

}
int foo(int x, int y){
 int z;
 z = x + y;
 return z;

}

! What needs to be stored?
n  Code, parameters, locals, globals, return values

CS270 – Fall 2013 – Colorado State University 6

Storage Requirements
! Code must be stored in memory so that we can

execute the function.
! The return address must be stored so that control

can be returned to the caller.
! Parameters must be sent from the caller to the

callee so that the function receives them.
! Return values must be sent from the callee to the

caller, that’s how results are returned.
! Local variables for the function must be stored

somewhere, is one copy enough?

4

CS270 – Fall 2013 – Colorado State University 7

Solution 1:Register Protocol

! Function call:
 LD R1, paramx # read x from memory
 LD R2, paramy # read y from memory
 JSR foo # function call
 ST R3, result # write result

! Function implementation:
foo ADD R3,R1,R2 # computation
 RET # function return

CS270 – Fall 2013 – Colorado State University 8

Register Protocol (pros and cons)

! Advantages:
n  Conceptually very simple
n  Registers are very fast
n  Minimal memory usage (and no pointers!)

! Disadvantages:
n  Cannot handle recursion or parallel execution
n  Not always enough registers!
n  Must manage registers to avoid overwriting
n  Requires ‘ad hoc’ save and restore

5

CS270 – Fall 2013 – Colorado State University 9

Solution 2: Mixed Code and Data
! Function implementation:
foo JMP foo_code # skip over data
foo_rv .BLKW 1 # return value
foo_ra .BLKW 1 # return address
foo_paramx .BLKW 1 # ‘x’ parameter
foo_paramy .BLKW 1 # ‘y’ parameter
foo_localz .BLKW 1 # ‘z’ local
foo_code ST R7, foo_ra # save return
 …
 LD R7, foo_ra # restore return
 RET

! Can construct data section by appending foo_

CS270 – Fall 2013 – Colorado State University 10

Mixed Code and Data

! Calling sequence

 ST R1, foo_paramx # R1 has ‘x’
 ST R2, foo_paramy # R2 has ‘y’
 JSR foo # Function call
 LD R3, foo_rv # R3 = return value

! Code can be written/generated relatively simply.
! Few instructions are spent moving data.

6

CS270 – Fall 2013 – Colorado State University 11

Mixed Code and Data (pros & cons)

! Advantages:
n  Code and data are close together
n  Conceptually easy to understand
n  Minimizes register usage for variables
n  Data persists through life of program

! Disadvantages:
n  Cannot handle recursion or parallel execution
n  Code is vulnerable to self-modification
n  Consumes resource for inactive functions

CS270 – Fall 2013 – Colorado State University 12

Solution 3: Separate Code and Data

! Memory allocation:

foo_rv .BLKW 1 # foo return value
foo_ra .BLKW 1 # foo return address
foo_paramx .BLKW 1 # foo ‘x’ parameter
foo_paramy .BLKW 1 # foo ‘y’ parameter
foo_localz .BLKW 1 # foo ‘z’ local
bar_rv .BLKW 1 # bar return value
bar_ra .BLKW 1 # bar return address
bar_paramw .BLKW 1 # bar ‘w’ parameter

! Code for foo() and bar() are somewhere else
! Function code call is similar to mixed solution

7

CS270 – Fall 2013 – Colorado State University 13

Separate Code and Data

! Advantages:
n  Code can be marked ‘read only’
n  Conceptually easy to understand
n  Early Fortran used this scheme
n  Data persists through life of program

! Disadvantages:
n  Cannot handle recursion or parallel execution
n  Consumes resource for inactive functions

CS270 – Fall 2013 – Colorado State University 14

! Instructions are stored in code segment
! Global data is stored in data segment
! Statically allocated memory uses stack
! Dynamically allocated memory uses heap

Real Solution: Execution Stack

Code
Data
Heap
↓
↑

Stack

n  Code segment is write protected
n  Initialized and uninitialized globals
n  Heap can be fragmented
n  Stack size is usually limited
n  Stack can grow either direction

(usual convention is down)

x0000

xFFFF

8

CS270 – Fall 2013 – Colorado State University 15

Execution Stack
! What is a stack?

n  First In, Last Out (FILO) data structure
n  PUSH adds data, POP removes data
n  Overflow condition: push when stack full
n  Underflow condition: pop when stack empty
n  Stack grows and shrinks as data is added and removed
n  Grows downward (decreasing address, convention)
n  Function calls allocate a stack frame
n  Return cleans up by freeing the stack frame
n  Supports nested (and recursive) function calls
n  Stack Trace shows current execution (Java/Eclipse)

CS270 – Fall 2013 – Colorado State University 16

Stack Trace
! Example stack trace from gdb: main() calls A()

calls B() calls C() calls D().
! Breakpoint is set in function D(), note that main()

is at the bottom, D() is at the top.

(gdb) info stack
#0 D (a=8, b=9) at stacktest.c:23
#1 0x00400531 in C (a=7, b=8) at stacktest.c:19
#2 0x0040050c in B (a=6, b=7) at stacktest.c:15
#3 0x004004e7 in A (a=5, b=6) at stacktest.c:11
#4 0x00400566 in main () at stacktest.c:29

9

CS270 – Fall 2013 – Colorado State University 17

Execution Stack

! Picture of stack during
program execution, same
call stack as previous slide:
n  main() calls A(5,6)
n  A(5,6) calls B(6,7)
n  B(6,7) calls C(7,8)
n  C(7,8) calls D(8,9)

D(8,9)

C(7,8)

B(6,7)

A(5,6)

main()

x0000

xFFFF

CS270 – Fall 2013 – Colorado State University 18

Stack Requirements
! Consider what has to happen in a function call:

n  Caller must pass parameters to the callee.
n  Caller must transfer control to the callee.
n  Callee needs space for local variables.
n  Callee must return control to the caller.
n  Someone must allocate space for the return value.
n  Someone must save and restore return address.
n  Someone must clean up the stack.

! Parameters, return value, return address, and
locals are stored on the stack.

! The order above determines the responsibility and
order of stack operations.

10

CS270 – Fall 2013 – Colorado State University 19

Execution Stack

! Definition: A stack frame or activation record is the
memory required for a function call:

n  Stack frame below contains the
function that called this function.

n  Stack frame above contains the
functions called from this function.

n  Caller allocates return value, pushes
parameters and return address.

n  Callee allocates and frees local
variables, stores the return value.

↑

Locals

Return Address

Parameters

Return Value

↓

x0000

xFFFF

CS270 – Fall 2013 – Colorado State University 20

Stack Pointers
! Clearly we need a variable to store the stack

pointer (SP), LC3 assembly uses R6.
! Stack execution is ubiquitous, so hardware has a

stack pointer, and often specific instructions.
! Problem: stack pointer is difficult to use to

access data, since it moves around constantly.
! Solution: allocate another variable called a frame

pointer (FP), for stack frame, uses R5.
! Where should frame pointer point? Convention

sets it between caller and callee data.

11

CS270 – Fall 2013 – Colorado State University 21

Execution Stack
! Definition: A stack frame or activation record is the

memory required for a function call:

n  Locals are accessed by negative
offsets from frame pointer.

n  Parameters and return value are
accessed by positive offsets.

n  Most offsets are small, this explains
LDR/STR implementation.

n  Base register stores pointer, signed
offset accesses both directions.

FP
SP

↑

First Local

Return Address

Parameters

Return Value

↓

x0000

xFFFF

CS270 – Fall 2013 – Colorado State University 22

Execution Stack
! In the previous solutions, the compiler allocated

parameters and locals in fixed memory locations.
! Using an execution stack means parameters and

locals are constantly moving around.
! The frame pointer solves this problem by using fixed

offsets instead of addresses.
! The compiler can generate code using offsets,

without knowing where the stack frame will reside.
! Frame pointer needs to be saved and restored

around function calls, using the stack!

12

CS270 – Fall 2013 – Colorado State University 23

Nested Calls

! Definition: A stack frame or activation record is the
memory required for a function call:

n  Single stack pointer, who owns it
at any given time?

n  Multiple frame pointers, but only
one is active in the register.

n  How does a recursive call
resemble a nested call?

n  How is access to the stack limited
to prevent corruption?

FP(D) D(8,9)

C(7,8)

B(6,7)

A(5,6)

main()

FP(C)

FP(B)

FP(A)

CS270 – Fall 2013 – Colorado State University 24

Execution Stack
! Advantages:

n  Code can be marked ‘read only’
n  Conceptually easy to understand
n  Supports recursion and parallel execution
n  No resources for inactive functions
n  Good data locality, no fragmenting
n  Minimizes register usage

! Disadvantages:
n  More memory than static allocation

13

CS270 – Fall 2013 – Colorado State University 25

Detailed Example
! Assume POP and PUSH code as follows:

MACRO PUSH(reg)
 ADD R6,R6,#-1 ; Decrement SP
 STR reg,R6,#0 ; Store value
END

MACRO POP(reg)
 LDR reg,R6,#0 ; Load value
 ADD R6,R6,#1 ; Increment SP
END

CS270 – Fall 2013 – Colorado State University 26

Detailed Example
! Main program to illustrate stack convention:

 .ORIG x3000
MAIN LD R6,STACK ; init stack pointer
 LD R0,OPERAND0 ; load first operand
 PUSH R0 ; PUSH first operand
 LD R1,OPERAND1 ; load second operand
 PUSH R1 ; PUSH second operand
 JSR FUNCTION ; call function
 POP R0 ; POP return value
 ADD R6,R6,#2 ; cleanup stack
 ST R0,RESULT ; store result
 HALT

14

CS270 – Fall 2013 – Colorado State University 27

Detailed Example

Second Operand

First Operand

SP

Stack before JSR instruction

CS270 – Fall 2013 – Colorado State University 28

Detailed Example
! Function code to illustrate stack convention:

FUNCTION
 ADD R6,R6,#-1 ; alloc return value
 PUSH R7 ; PUSH return address
 PUSH R5 ; PUSH frame pointer
 ADD R5,R6,#-1 ; FP = SP-1

 ADD R6,R6,#-1 ; alloc local variable
 LDR R2,R5,#5 ; load first operand
 LDR R3,R5,#4 ; load second operand
 ADD R4,R3,R2 ; add operands
 STR R4,R5,#0 ; store local variable

15

CS270 – Fall 2013 – Colorado State University 29

Detailed Example

Local Variable

Frame Pointer

Return Address

Return Value

Second Operand

First Operand

FP, SP

Stack before STR instruction

FP[0]
FP[1]
FP[2]
FP[3]
FP[4]
FP[5]

CS270 – Fall 2013 – Colorado State University 30

Detailed Example
! Function code to illustrate stack convention:

FUNCTION ; stack exit code
 STR R4,R5,#3 ; store return value
 ADD R6,R5,#1 ; SP = FP+1
 POP R5 ; POP frame pointer
 POP R7 ; POP return address
 RET ; return

OPERAND0 .FILL x1234 ; first operand
OPERAND1 .FILL x2345 ; second operand
RESULT .BLKW 1 ; result
STACK .FILL x4000 ; stack address

16

CS270 – Fall 2013 – Colorado State University 31

Stack Execution
! Summary of memory model:

n  We have discussed the stack model for execution of
C and LC3 programs, and we have shown how a
compiler might generate code for function calls.

! Possible future homework assignment:
n  Look at assembly code emitted by the compiler and

figure out the stack convention.

! Possible future programming assignment:
n  Write a recursive function in C, then implement the

same function in assembly code, managing memory
using the stack model.

