
12/8/13	

1	

Sanjay Rajopadhye
Colorado State University

n CS270 recap: what’s still a black box?
n Moore’s law for ever
n The “walls” and surmounting them

n  Go for Speed
n  Bandwidth/Memory Wall
n  The decade of ILP and frequency
n  Power & Energy wall & the rise of multi-core
n  Utilization wall – next level or game over?

n Back to the present – PA6 details and issues

2

12/8/13	

2	

n Combinational circuits are instantaneous
n Minimalist vs Efficient

n  LC-3 can execute any program
n  But does it do it efficiently?

n How fast can the machine go?
n How much power does it consume?
n What is the manufacturing cost?

n  Economies of scale

3

n Originally “formulated” by Gordon Moore
(~1965) but other earlier observations too
n  The number of transistors that can be

inexpensively placed on an integrated
circuit is increasing exponentially, doubling
approximately every years [later amended
to 2 years]

n  http://en.wikipedia.org/wiki/Moore's_law
n  It has held true till now and is expected to

hold for about 10 more years

4

12/8/13	

3	

n  For chip designers:
n  “we had better ensure that the exponential growth is

maintained”
n  or else the competition will J

n  Main reason why the law is being sustained
n  Other features of semiconductors & computing

technology are also growing exponentially (but at
different rates):
n  Frequency
n  Die size
n  Memory: density, and speed (bandwidth and latency)
n  Hard drive and I/O devices (both capacity and speed)
n  Networks
n  Power
n  Manufacturing cost

5

n Better, faster, cheaper, lighter, …
n We as computer scientists are providing the

technology that is changing the world
exponentially

n Hard challenges
n Exciting potential
n Always room to innovate – if you stop

learning you stagnate

6

12/8/13	

4	

n When two quantities grow exponentially,
but at different rates, their ratio also grows
exponentially. Consider,

7

 y1 = a
x,

and y2 = b
x for a ≥ b ≥1

y = y1

y2

=
a
b
"

#
$
%

&
'
x

=α x for α ≥1

n  Memory gap/wall:
n  Memory bandwidth grows much more slowly than processor

speeds (since mid 80s, this was addressed by ever increasing
on-chip caches).

n  ILP (instruction level parallelism) wall
n  One way to exploit increased clock frequency was to increase

the instruction-level parallelism on chip (deeply pipelined, out-
of-order, VLIW, etc.) leading to complicated control logic.

n  Power wall
n  Power dissipation ability is also increasing exponentially, but at

such a slow rate that it has effectively peaked.
n  Power dissipation ability is also increasing exponentially, but at

such a slow rate that it has effectively peaked.
n  Utilization wall

n  Multi- and many-core trend cannot be sustained: there is no way
to keep all the transistors on future chips active at all times, and
this “dark silicon” will also be increasing (exponentially)

8

12/8/13	

5	

n  Increasing the frequency
n  Simply riding More’s law

n Better architecture through instruction level
parallelism (ILP)
n  Pipelining
n  Super-scalar
n  Out-of-order execution

9

n Caches (since mid eighties)
n  If access to memory is slow, then build a

faster (smaller) memory on-chip

n Need to exploit
n  Locality of reference
n  Reuse of data
n  Collaboration between architecture,

compiler and operating system

10

12/8/13	

6	

n  Increasing the frequency implies increasing
the heat generated
n  And that has to be dissipated (or else th chip

will melt

n  If you can’t increase the frequency (raw
speed)
n  Add more processors (cores)
n  “The processor is the new transistor” in

Moore’s law

11

n Revisiting many of the concepts seen
earlier:
n  HW4, LC3Viz and the “cycle-by-cycle”

details of the instruction execution
n  Appendix A of the textbook
n  PA2 (32-bit floating point addition) in C
n  PA5 (16-bit FPADD) in assembly

n Code comprehension
n  Reading code written by others

12

12/8/13	

7	

n  In scientific notation with 4-digit magnitude
and 1-digit exponent:
n  What is the largest number:

n  9.999E9

n  What is the smallest (positive) number?
n  1.000E-9

n Can we do better?
n  Don’t force numbers to be (always)

normalized:
n  0.001E-9

13

n Deal with the “implicit 1”
n  Sometimes it’s there and sometimes it isn’t

n When?
n  If exponent is 00000, no implicit 1

n Need to handle corner cases in the
algorithm.
n  What if the inputs are a mix of normal and

sub-normal numbers
n  What if the answer is?

14

