
CS 270 Spring 2012 Midterm

8 March 2012, 9:30 pm

Name

Please read these instructions completely before proceeding. Then,

sign below to indicate that you have understood them. Your exam

will not be graded without your signature.

� This is a closed book exam, but you are allowed to bring one page (one single side) of

notes. The last sheet of this exam has the LC-3 opcodes (the back cover of the text) and

the datapath of the LC3 (page 142). You are free to tear out this page and use it as a

reference|no need to turn it in with your exam.

� This midterm will last 75 minutes. The total score is 85, the weight of each problem

corresponds roughly to the time you should spend on it.

� You are allowed to use only paper/pen and your brain|no calculator, laptop, phone,

ipod, or any electronic device. Please turn o� cellphones, and please refrain from using

any listening device (music, etc.) You shouldn't be wearing earphones unless they are for

a medical reason.

� Answer all questions. The exam is designed so that the average score is about 57 (66.7%).

Do not be discouraged if you cannot answer all the questions.

� Do not turn this page until you are asked to.

I have read and understood the above instructions. I promise to

do the exam honestly and fairly.

Signature



Problem 0: Plan of Attack [5 pts]

Quickly read through the exam and make a plan of attack. For each question, think

about what skills it's testing for, how comfortable you feel, and rate its di�culty level

for you. Based on this, �ll up the PoA column (the order in which you plan to answer

the questions, and the time you will spend on each one) in the table below. Don't �ll

up the last two columns as yet.

Don't write in these columns Plan of Attack Revised PoA

Prob. Topic Max Score PoA Time PoA Time

0 Plan 5 5 0 5 mins

1 Numbers & Data 15

2 Gates/Combinational Circuits 15

3 Sequential Circuits, FSMs 10

0.b Revised PoA 5

4 C Programming 15

5 LC-3 Architecture 20

Total 85

2



Problem 1: Numbers and Data [15 pts total]

The �rst two problems deal with numbers less than 1, i.e., with a \radix point." Give

your answers in this form, not as a fraction.

Part a: Convert 0.7148 to base 10. [4 pts]

Part b: Convert the decimal fraction 0.5273437510 to base 4. [4 pts]

3



Part c: Convert 20.8984375 to a 16-bit oating point (half precision) number. [Hint:

Part a may help you] [4 pts]

Part d: Adding oating point numbers in scienti�c notation. [3 pts]

(i) Add 7.2177 E 12 and −7.2217 E 12

(ii) Add 7.6217 E 12 and 7.2177 E 11

4



Problem 2: Gates and Combinational Circuits [15 pts total]

a. We want to design a comparator for 8-bit unsigned binary numbers, but we want the

design to work from \left to right," by chaining up 8 cells. Each cell has inouts Xi and

Yi, the two input bits and also two inputs signals from the left (higher bits) called Din

and Rin. It produces two signals to the next cell on the right called Dout and Rout. So

the truth table of the cell has 16 entries, but there are many simpli�cations.

Din Rin X Y Dout Rout

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0 1 0

1 0 0 1 1 0

1 0 1 0 1 0

1 0 1 1 1 0

1 1 0 0 1 1

1 1 0 1 1 1

1 1 1 0 1 1

1 1 1 1 1 1

If Din = 1, then the decision (about which is the larger of X and Y, has already been

made, and the signal Rin (R of result) tells this result (1 means that X > Y). The cell

should just propagate this information to the right. So the bottom half of the truth

table has been �lled up for you. But if Din = 0, then the cell has the opportunity to

make a decision, based on the values of the other inputs. Fill up the remainder of the

5



truth table for the case when Din = 0. [7 pts]

ii. Consider the following truth table that implements a two-input Boolean function.

Draw the circuit for implementing this function using only NOR gates (partial credit

for an otherwise correct implementation using other gates). [8 pts]

A B C

0 0 1

0 1 0

1 0 0

1 1 1

6



Problem 3: Finite State Machines [10 pts total]

Draw the state diagram of a controller for a vending machine with the following beavior.

It delivers some candy (output 1) when the user inserts coins (nickels, dimes or quarters)

that add up to 25 cents. It accepts three inputs (N, D, Q). If the user inserts extra

money, it delivers candy (produces an output) but does not return change. Rather, it

uses the extra money as credit towards the next purchase.

Problem 0.b: Revised PoA [5 pts]

This is a 5 minute, strategy/stretch break. First, take a quick 1-minute break. Close

you eyes, calm down, breathe deeply and relax. Get up and physically stretch and try

to ease tension. Make eye contact with your friends and smile. Look at Sanjay and

scowl. Now, revisit your plan. Draw a line through all problems that you have �nished,

and revise the plan as needed. Budget the remaining time appropriately.

7



Problem 4: C programming [15 pts total]

Complete the following piece of C code, to do the extra credit part of PA2. It extracts

the sign, exponent and fractional parts of the two half-precision numbers, x and y, and

computes their sum in answer.

uint16_t x, y, answer; //answer should contain the sum of x and y

int a1, a2, b1, b2, v1, v2, temp; //

a1 = x & (1<<15);

a2 = y & (1<<15);

b1 = (x & (31<<10)) >> 10;

b2 = (y & (31<<10)) >> 10;

v1 = (x & 1023); //Note: this has only 10 bits: implicit 1 is still missing

v2 = (y & 1023); //Note: this has only 10 bits: implicit 1 is still missing

if (a1==a2 && b1>b2) {// x and y have the same sign, but x has bigger exponent

// ignore this case

}

else if (a1==a2 && b2>=b1) {// same sign but other case of exponent

{ // Study thia code and understand the logic (including renormalization)

result = (v2 | 1024) + ((v1 | 1024) >> (b2-b1));

if (result | 1 << 11){

result = (result >> 1) & 1023;

answer = a1 | (b2+1) << 10 | result;

}

else {

result = result & 1023;

answer = a1 | b2 << 10 | result;

}

}

// Study the code above and then finish the rest of it on the next page

}

8



Complete the case when the signs are di�erent.

if (a1 != a2)

{ // FIXME: First Identify the different subcases

// Then handle one of them completely

// Finally, indicate how the others are handled

}

9



Problem 5: LC-3 [20 pts total]

Remember that the LC-3 has three types of instructions: operate (e.g., ADD), load/store

(that transfer data to/from a register from/to a memory address), and control (BR,

JMP). When we ask you to write one or more LC-3 instructions, we �rst want you to

clearly describe what the instruction is doing in a comment, then we want the answer

in binary/hex. For example, 0x1DAA, which is 0001,1101,1010,1010 is an instruction

that adds the immediate value 10 to R6 and stores the result back in R6. You should

write this as follows (the comment on the right in the register transfer notation is more

important than the hex)

0x1DAA; Comment: R6 <- R6 + 10

Part a. We want you to write a \program:" a sequence of operate instructions, to

compute the bit-wise OR of the contents of R3 and R4, and store the result in R0. No

other registers should be a�ected by your program. First, describe your thinking in

terms of comments in register transfer notation, and then write the actual binary/hex

code. [10 pts]

10



Part b. At a certain moment in time, the PC of an LC-3 computer contains, 0x2000, in

the memory, at address 0x2000, is a word whose most signi�cant 4 bits are 0001 (opcode

ADD). The clock goes through 4 cycls so that the instruction in 0x2000 is executed.

The values in the 7 registers before and after the execution are as follows.

R0 R1 R2 R3 R4 R5 R6 R7

Before 0x0000 0x1111 0x2222 0x3333 0x4444 0x5555 0x6666 0x7777

After 0x0000 0x1111 0x2222 0xFFF2 0x4444 0x5555 0x6666 0x7777

Based on this information, deduce the contents of memory at address 0x2000 (the

complete instruction). Describe your thinking is you want to be considered for partial

credit. [10 pts]

11


