
CS270 Programming Assignment 1
“Radix Conversions”

Due Friday, September 9 (via checkin by 3:00pm)
Homework and programming assignments are to be done individually.

Goals
In this assignment, you will learn C programming and reinforce your understanding of number
representation by implementing C functions to convert numbers from any specified radix into decimal,
to convert decimal numbers into any specified radix, and ultimately, to convert a number in one
specified radix into another specified radix. A “specified radix” in this program can range from 2 to 36.

The Assignment
Make a subdirectory called PA1 for the programming assignment; all files must reside in this
subdirectory. We have provided you with a number of files to complete the assignment. Copy the
following files into your PA1 directory:
http://www.cs.colostate.edu/~cs270/Assignments/PA1/main.c
http://www.cs.colostate.edu/~cs270/Assignments/PA1/myfunctions.h
http://www.cs.colostate.edu/~cs270/Assignments/PA1/myfunctions.c
http://www.cs.colostate.edu/~cs270/Assignments/PA1/Makefile

You will need to implement the following functions inside “myfunctions.c”. The skeleton structure has
already been provided for you.

1) int radixNToDecimal(char radixNNumber[], int radixN);
2) char* decimalToRadixN(int decimalNumber, int radixN, char result[]);
3) char* radixAToRadixB(char radixANumber[], int radixA, int radixB, char result[]);

Function 1 – radixNToDecimal:
Use Horner's Algorithm (as reviewed in lecture 08/25/11) to convert a null-terminated array of

char (i.e., a C string) into a decimal number (radix = 10). The array of char, radixNNumber, represents
a non-negative number in the base indicated by argument radixN—convert this number into radix 10
and return it as an integer.

To complete this function, you will need to utilize a provided helper function,
symbolToDecimal, which converts a digit from radixN into its decimal equivalent, e.g., 0 → 0, 1 → 1,
…, 9 → 9, A → 10, B → 11, …, Z → 35. This provides 36 unique symbols which we will use to
represent numbers with bases ranging from 2 to 36.

Function 2 - decimalToRadixN:
Use repeated division and modulo operations (as reviewed in lecture 08/25/11) to convert an

integer into a null-terminated array of char (i.e., a C string). The integer, decimalNumber, represents a
non-negative number in radix 10, and must be converted into the radix specified by argument radixN
and returned as an array of char.

To complete this function, you will need to utilize another provided helper function,
decimalToSymbol, which converts a decimal value into its radixN equivalent, e.g., 0 → 0, 1 → 1, …, 9
→ 9, 10 → A, 11 → B, …, 35 → Z.

Finally, this function will require you to build and return a null-terminated string (i.e., an array
of char). The char array result[] has been provided for you (as a function argument) to accomplish this.
The size of the array result[] is PLACES_LIMIT.

Function #3:
At last, use functional composition to implement this final function in terms of the previous two

functions. This will provide a function which converts a non-negative null-terminated array of char
representing a number in radixA into an equivalent non-negative null-terminated array of char in
radixB. Again, the char array result[] has been provided (as a function argument) to help you
accomplish this.

Compile and Run:
We provided you with a Makefile to compile the program. The program is executed as follows, and
takes three arguments:
%> pa1 <number> <fromRadix> <toRadix>
Where number is the number to convert, fromRadix is the radix number is currently represented in, and
toRadix is the radix to convert number into.

Try the program with the following test cases:
 %> pa1 255 10 2
 %> pa1 10101100 2 16
 %> pa1 RADIX 36 10

Calculate these results by hand and verify if you are getting the correct output. The results should be
“11111111”, “AC”, and “45833721”, respectively. We will run your program using different inputs, so
DO NOT HARDCODE values!

For this assignment you must also submit a README file with your name and answers to the
following questions. Copy the question into the file and then type in the answer after the question.

Question 1: Are you doing your assignments on the school machines or at home? If at school what is
the name of the machine you are using to answer these questions?

Question 2: Type gcc --version on the command line and write down the output. This assumes Linux,
if you are running on another operating system, then write down the compiler version.

Submission Instructions
When you are done, your directory should have main.c, myfunctions.c, myfunctions.h, Makefile and a
README file. To package the files into a single compressed file, type the following command from
inside PA1 directory:

%> cd PA1
%> make pack

This will create a file called PA1.tar.gz one directory above PA1. All assignments will be submitted
directly via checkin, which will be explained and demonstrated in recitation. A sanity check of your
PA1.tar.gz will ensure that your submission has all the required files:

%> mkdir ~/Temp
%> cp PA1.tar.gz ~/Temp
%> cd ~/Temp
%> tar -zxvf PA1.tar.gz

%> ls PA1

Grading Criteria
Points will be awarded as follows: functionality - 75 points (30 for function #1, 30 for function #2, and
15 for function #3), coding style and comments - 10 points, following assignment directions - 5 points,
and supplying answers to the README questions - 10 points. The grading factors we consider for
coding style include having clear and concise comments, consistent indentation, and the minimal
amount of code to solve the problem. You will also need to ensure that every function (declared in
myfunctions.h) has a properly formatted description header.

Late Policy
Late assignments will be accepted up to 48 hours past the due date with a deduction of 10% per 24
hours. Late assignments will not be accepted after 48 hours. Please contact the instructor or teaching
assistant if you have problems with checkin.

