Name:	Date:

CS270 Homework Assignment 3 (HW3)

Due Thursday, September 22 (start of class) Homework and programming assignments are to be done individually.

Goals

To understand complex combinational circuits and sequential logic. This assignment requires the use of Logisim, the logic simulator that you have used for the previous assignment.

The Assignment

Question 0: Please resubmit any question in HW2 that you may have solved incorrectly. This is your opportunity to redo the HW and win back points.

Question 1 (35 points) Consider the logic circuit below which is a 4-bit adder (each big square box is a full adder circuit, FA). Note how one of the inputs to each FA comes from a mux.

- **a. (5 points)** What is the output of the circuit when X is 0 (describe in words)?
- **b. (5 points)** What is it when X is 1?
- **c. (5 points)** Describe succinctly what this circuit does, as a function of X? Describe succinctly what this circuit does, as a function of X

d. (20 points) Using the above circuit as a building block, construct a circuit that implements a
conditional adder/subtractor for two 4-bit numbers, P and Q, i.e., a circuit that will produce either P+Q
or P-Q, depending on a control signal Z. You may find it useful to think of the circuit above as a black
box that takes three 4-bit words (A, B and C) and two 1-bit signals X and Cin.

Question 2 (30 points): Consider Fig 3.21 (from textbook), the diagram of a 4-entry 3-bit memory.

- **a. (10 points)** Implement the circuit in Logisim and turn in the schematic (in a separate sheet).
- **b. (3 points)** To read from the bottom-most memory location, what must be the values of A[1:0] and WE be?
- **c. (3 points)** To change the number of entries from 4 to 50, how many address lines would be needed?
- **d. (5 points)** Suppose that a certain register in the machine is to be used to address this new, 50-word memory. What is the number of bits that this register should have? How many additional locations can be added to this memory without changing the width of this register.
- **e. (9 points)** Now we want to modify the memory so that at each of the 50 addresses, we can store a 16-bit value. How many bits are needed in the MAR? In the MDR? If we asked you to redraw the memory as in Fig 3.21, how many gated D-latches would you need?

Question 3 (35 points): We want to design a "pattern recognizer" sequential circuit. It takes a sequence of ASCII digits. It produces an output 1 whenever the input pattern is 2323, but *overlaps* are allowed. For example the input sequence (the commas after every four characters are to improve readability, not part of the sequence) 2302,3232,3123,2301 will produce the output sequence 0000,0010,1000,0100.

a. (15 points) Draw the state diagram of this finite state machine? Extra credit if you use the minimum number of states.

b.	(5 points) How many states does this machine have? How many bits are required to represent the state of this machine?
c.	(15 points) Write a snippet of C code using the switch statement (see Lecture 5, slides 30-39).

Submission Instructions

All homework assignments will be handed in at the beginning of class on the due date. Logisim can save circuits as .gif pictures, please submit a picture for each circuit. After printing your circuits, you can cut and paste to this document, or attach to the back with a label showing the question number.

Late Policy

Late assignments will be accepted up to 48 hours past the due date with a deduction of 10% per 24 hours. Late assignments will not be accepted after 48 hours. Late submissions must be made via RamCT (.txt or .pdf files only).