CS253: Software Development with C++

Spring 2023

Random Numbers

Show Lecture.RandomNumbers as a slide show.

CS253 Random Numbers

Inclusion

To use C++ random numbers, you need to:

    
#include <random>

To use old C random numbers (don’t ), you need to:

    
#include <cstdlib>

Philosophy

“Computers can’t do anything truly random. Only a person can do that.”

Old Stuff

Patron Saint of Randomness

Traditional Method

Traditional random number generators work like this:

unsigned long n = 1;
for (int i=0; i<5; i++) {
    n = n * 16807 % 2147483647;
    cout << n << '\n';
}
16807
282475249
1622650073
984943658
1144108930

Overview

Generators

EngineDescription
default_random_engineDefault random engine
minstd_randMinimal Standard minstd_rand generator
minstd_rand0Minimal Standard minstd_rand0 generator
mt19937Mersenne Twister 19937 generator
mt19937_64Mersenne Twister 19937 generator (64 bit)
ranlux24_baseRanlux 24 base generator
ranlux48_baseRanlux 48 base generator
ranlux24Ranlux 24 generator
ranlux48Ranlux 48 generator
knuth_bKnuth-B generator
random_deviceTrue random number generator

Default Engine

Define a random-number generator, and use () to generate a number. This is not a function call, because gen is an object, not a function. It’s operator().







🤨 That sequence looks familiar …

#include <random>
#include <iostream>
using namespace std;

int main() {
    default_random_engine gen;
    for (int i=0; i<5; i++)
        cout << gen() << '\n';
}
16807
282475249
1622650073
984943658
1144108930

I won’t bother with the #includes in subsequent examples.

Mersenne Twister

mt19937_64 gen;
cout << "range is " << gen.min() << "…" << gen.max() << "\n\n";
for (int i=0; i<3; i++)
    cout << gen() << '\n';
range is 0…18446744073709551615

14514284786278117030
4620546740167642908
13109570281517897720

Ranges

Generators have varying ranges:

ranlux24 rl;
minstd_rand mr;
random_device rd;
mt19937_64 mt;

cout << "ranlux24:      " << rl.min() << "…" << rl.max() << '\n'
     << "minstd_rand:   " << mr.min() << "…" << mr.max() << '\n'
     << "random_device: " << rd.min() << "…" << rd.max() << '\n'
     << "mt19937_64:    " << mt.min() << "…" << mt.max() << '\n';
ranlux24:      0…16777215
minstd_rand:   1…2147483646
random_device: 0…4294967295
mt19937_64:    0…18446744073709551615

Hey, look! Zero is not a possible return value for minstd_rand.

Save/Restore

A generator can save & restore state to an I/O stream:

ranlux24 gen;
cout << gen() << ' ';
cout << gen() << endl;
ofstream("state") << gen;
system("wc -c state");
cout << gen() << ' ';
cout << gen() << '\n';
ifstream("state") >> gen;
cout << gen() << ' ';
cout << gen() << '\n';
15039276 16323925
209 state
14283486 7150092
14283486 7150092
endl! Isn’t that a sin? 😈 🔥

Needed to flush output before wc ran.

True randomness

random_device a, b, c;
cout << a() << '\n'
     << b() << '\n'
     << c() << '\n';
4108057877
1388469865
789537133

Cloudflare

The hosting service Cloudflare uses a unique source of randomness.

a picture of Cloudfare’s wall of lava lamps

Seeding

minstd_rand a, b, c(123);
cout << a() << ' ' << a() << '\n';
cout << b() << ' ' << b() << '\n';
cout << c() << ' ' << c() << '\n';
48271 182605794
48271 182605794
5937333 985676192

Seed with process ID

auto seed = getpid();
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1997992470
1603932600
202609309
513426301
1639689191

Seed with time

// seconds since start of 1970
auto seed = time(nullptr);
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
515725883
973662269
1971772304
798167697
348791060

Seed with more accurate time

Nanoseconds make more possibilities:

auto seed = chrono::high_resolution_clock::now()
            .time_since_epoch().count();
cout << "Seed: " << seed << '\n';
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
Seed: 1719786022039148641
1434901385
1334688644
98640877
522528268
766590613

Better Seeding

Seed with random_device

random_device rd;
auto seed = rd();
minstd_rand0 a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
409305393
805618810
150945335
760058238
1066073710

You can seed with random_device, if you know that it’s truly random.

Not good enough.

Caution

Resist the urge to hack your own distribution—it’s hard. Just use the standard distributions.

minstd_rand r;
int first_half = 0;
for (int i=0; i<100'000'000; i++)
    if (r() % 1'000'000'000 < 500'000'000)
        first_half++;
cout << first_half << '\n';
53435616
Shouldn’t the result be close to 50 million?

minstd_rand, on this computer, produces a number 1…2,147,483,646. If you take that mod a billion, the range 1…147,473,646 appears three times, whereas 147,473,647…999,999,999 only appears twice, so 1…147,473,646 is overrepresented. Tricky to get right!

Distributions

uniform_int_distribution

auto seed = random_device()();  //❓❓❓
mt19937 gen(seed);
uniform_int_distribution<int> dist(1,6);
for (int y=0; y<10; y++) {
    for (int x=0; x<40; x++)
        cout << dist(gen) << ' ';
    cout << '\n';
}
3 3 3 3 1 3 5 6 2 6 4 2 4 5 2 6 4 6 1 2 2 1 6 3 2 4 1 2 4 1 4 4 4 2 4 4 4 4 4 4 
5 3 1 1 5 2 6 5 1 6 5 1 1 2 4 5 5 1 4 4 6 1 4 3 2 6 3 2 3 5 4 6 2 6 4 6 4 2 1 1 
4 3 1 2 2 4 5 1 3 3 1 5 4 6 2 6 2 3 4 4 6 3 2 4 6 5 1 5 2 4 1 6 1 5 1 1 3 2 5 4 
2 4 4 4 1 1 3 4 3 1 6 2 5 3 4 2 1 4 5 5 1 3 6 4 6 6 6 6 1 3 4 6 1 5 5 4 1 6 2 3 
4 3 4 6 3 2 4 1 1 5 3 5 3 6 3 6 5 5 2 2 5 2 5 1 1 4 3 1 5 3 6 1 3 2 3 3 6 1 3 6 
6 2 1 2 4 5 4 5 4 2 2 2 3 2 1 4 5 2 5 6 2 2 3 1 4 5 3 5 6 5 6 5 6 4 5 1 1 6 6 1 
6 5 5 4 4 6 6 3 6 2 2 2 6 6 4 6 6 4 5 4 3 5 3 4 5 2 6 1 5 3 1 4 4 6 3 2 5 2 1 3 
2 1 2 6 1 4 6 3 2 6 4 5 2 3 4 4 3 6 3 6 4 1 6 4 3 4 2 6 2 2 4 6 2 3 6 6 5 1 5 5 
6 3 2 4 4 6 3 3 1 6 2 5 2 6 6 5 1 1 6 3 2 4 6 2 2 1 3 3 1 1 1 5 5 3 3 2 6 1 4 3 
2 5 2 3 1 2 3 3 2 3 1 2 5 2 2 6 4 1 1 1 2 3 3 1 1 5 4 1 1 6 2 3 3 5 1 2 4 5 6 6 

uniform_real_distribution

auto seed = random_device()();
ranlux48 gen(seed);
uniform_real_distribution<> dist(18.0, 25.0);
for (int y=0; y<5; y++) {
    for (int x=0; x<10; x++)
        cout << fixed << setprecision(3) << dist(gen) << ' ';
    cout << '\n';
}
20.995 23.664 23.183 21.804 23.120 23.749 19.439 23.606 19.662 23.740 
20.671 20.377 23.536 19.224 21.416 23.123 19.665 19.788 24.114 21.083 
21.938 19.110 23.763 19.043 19.074 18.792 19.932 23.213 21.755 19.530 
21.505 18.655 20.068 18.704 21.666 23.556 19.105 24.319 23.628 23.337 
22.051 22.750 22.148 23.439 23.910 20.151 21.655 21.640 19.674 18.782 
OMG—what’s that <> doing there?

uniform_real_distribution’s template argument defaults to double, because … real.

Boolean Values

Yield true 42% of time:

random_device rd;
knuth_b gen(rd());
bernoulli_distribution dist(0.42);
constexpr int nrolls = 1'000'000;

int count=0;
for (int i=0; i<nrolls; i++)
    if (dist(gen))
        count++;

cout << "true: " << count*100.0/nrolls << "%\n";
true: 42.0101%

Histogram

random_device rd;
mt19937_64 gen(rd());
normal_distribution<> dist(21.5, 1.5);
map<int,int> tally;
for (int i=0; i<10000; i++)
    tally[dist(gen)]++;
for (auto p : tally)
    cout << p.first << ": " << string(p.second/100,'#') << '\n';
15: 
16: 
17: 
18: ####
19: ###########
20: ####################
21: ##########################
22: #####################
23: ##########
24: ###
25: 
26: 
27: 

Passwords

random_device rd;
auto seed = rd();
ranlux24 gen(seed);
uniform_int_distribution<char> dist('A','~');
for (int y=0; y<8; y++) {
    string pw;
    for (int x=0; x<32; x++)
        pw += dist(gen);
    cout << "Password: " << pw << '\n';
}
Password: Ykh`K|N`~PfN_GX~[SXk|R~~q~[zcAc^
Password: J[NtOpqQDCkP\TxehFZuvelsBf_fTKoH
Password: UAv~Fb[WfiJyV~GIYx^M|mVYixBUkwZD
Password: BlEiNptpAgkIvlKbDyLdFxLOGaRPMFLG
Password: uz[_Z}tEFn]UZZwQ{yXZLyW_IpDLfpDl
Password: zJ_^QwXN}QD`NuVrFIplKKflN{A|\HpP
Password: hdUOR}sK`nVaxE{Icx|LtqLcmtdyRJYZ
Password: rdSWT~MMyJsQnKz|YdY_tvpMFxeJ}Mcs

Even though we’re using uniform_int_distribution, which has int right there in its name, it’s uniform_int_distribution<char>, so we get characters. Think of them as 8-bit integers that display differently.