CS253: Software Development with C++

Spring 2023

Random Numbers

Show Lecture.RandomNumbers as a slide show.

CS253 Random Numbers

Inclusion

To use C++ random numbers, you need to:

    
#include <random>

To use old C random numbers (don’t ), you need to:

    
#include <cstdlib>

Philosophy

“Computers can’t do anything truly random. Only a person can do that.”

Old Stuff

Patron Saint of Randomness

Traditional Method

Traditional random number generators work like this:

unsigned long n = 1;
for (int i=0; i<5; i++) {
    n = n * 16807 % 2147483647;
    cout << n << '\n';
}
16807
282475249
1622650073
984943658
1144108930

Overview

Generators

EngineDescription
default_random_engineDefault random engine
minstd_randMinimal Standard minstd_rand generator
minstd_rand0Minimal Standard minstd_rand0 generator
mt19937Mersenne Twister 19937 generator
mt19937_64Mersenne Twister 19937 generator (64 bit)
ranlux24_baseRanlux 24 base generator
ranlux48_baseRanlux 48 base generator
ranlux24Ranlux 24 generator
ranlux48Ranlux 48 generator
knuth_bKnuth-B generator
random_deviceTrue random number generator

Default Engine

Define a random-number generator, and use () to generate a number. This is not a function call, because gen is an object, not a function. It’s operator().







🤨 That sequence looks familiar …

#include <random>
#include <iostream>
using namespace std;

int main() {
    default_random_engine gen;
    for (int i=0; i<5; i++)
        cout << gen() << '\n';
}
16807
282475249
1622650073
984943658
1144108930

I won’t bother with the #includes in subsequent examples.

Mersenne Twister

mt19937_64 gen;
cout << "range is " << gen.min() << "…" << gen.max() << "\n\n";
for (int i=0; i<3; i++)
    cout << gen() << '\n';
range is 0…18446744073709551615

14514284786278117030
4620546740167642908
13109570281517897720

Ranges

Generators have varying ranges:

ranlux24 rl;
minstd_rand mr;
random_device rd;
mt19937_64 mt;

cout << "ranlux24:      " << rl.min() << "…" << rl.max() << '\n'
     << "minstd_rand:   " << mr.min() << "…" << mr.max() << '\n'
     << "random_device: " << rd.min() << "…" << rd.max() << '\n'
     << "mt19937_64:    " << mt.min() << "…" << mt.max() << '\n';
ranlux24:      0…16777215
minstd_rand:   1…2147483646
random_device: 0…4294967295
mt19937_64:    0…18446744073709551615

Hey, look! Zero is not a possible return value for minstd_rand.

Save/Restore

A generator can save & restore state to an I/O stream:

ranlux24 gen;
cout << gen() << ' ';
cout << gen() << endl;
ofstream("state") << gen;
system("wc -c state");
cout << gen() << ' ';
cout << gen() << '\n';
ifstream("state") >> gen;
cout << gen() << ' ';
cout << gen() << '\n';
15039276 16323925
209 state
14283486 7150092
14283486 7150092
endl! Isn’t that a sin? 😈 🔥

Needed to flush output before wc ran.

True randomness

random_device a, b, c;
cout << a() << '\n'
     << b() << '\n'
     << c() << '\n';
9119532
1799738189
418658452

Cloudflare

The hosting service Cloudflare uses a unique source of randomness.

a picture of Cloudfare’s wall of lava lamps

Seeding

minstd_rand a, b, c(123);
cout << a() << ' ' << a() << '\n';
cout << b() << ' ' << b() << '\n';
cout << c() << ' ' << c() << '\n';
48271 182605794
48271 182605794
5937333 985676192

Seed with process ID

auto seed = getpid();
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
122956460
1733963999
2001053904
1206041571
698487218

Seed with time

// seconds since start of 1970
auto seed = time(nullptr);
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
839448308
140340225
1199578337
96847619
2007000877

Seed with more accurate time

Nanoseconds make more possibilities:

auto seed = chrono::high_resolution_clock::now()
            .time_since_epoch().count();
cout << "Seed: " << seed << '\n';
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
Seed: 1732204900288785675
471443988
188537489
2004919180
955702078
451302284

Better Seeding

Seed with random_device

random_device rd;
auto seed = rd();
minstd_rand0 a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1719777796
1323012399
823708955
1396818123
30964257

You can seed with random_device, if you know that it’s truly random.

Not good enough.

Caution

Resist the urge to hack your own distribution—it’s hard. Just use the standard distributions.

minstd_rand r;
int first_half = 0;
for (int i=0; i<100'000'000; i++)
    if (r() % 1'000'000'000 < 500'000'000)
        first_half++;
cout << first_half << '\n';
53435616
Shouldn’t the result be close to 50 million?

minstd_rand, on this computer, produces a number 1…2,147,483,646. If you take that mod a billion, the range 1…147,473,646 appears three times, whereas 147,473,647…999,999,999 only appears twice, so 1…147,473,646 is overrepresented. Tricky to get right!

Distributions

uniform_int_distribution

auto seed = random_device()();  //❓❓❓
mt19937 gen(seed);
uniform_int_distribution<int> dist(1,6);
for (int y=0; y<10; y++) {
    for (int x=0; x<40; x++)
        cout << dist(gen) << ' ';
    cout << '\n';
}
3 5 2 2 2 5 3 3 2 6 2 2 2 1 1 1 4 2 6 2 3 4 4 3 6 1 3 6 4 2 6 3 6 2 1 4 4 5 5 2 
6 2 1 6 1 3 6 1 2 3 2 6 5 1 6 6 1 5 4 1 6 2 6 3 5 4 1 5 3 1 2 5 6 4 5 3 1 6 1 5 
3 6 1 1 1 4 6 2 3 6 4 4 6 2 5 4 4 2 5 2 3 3 1 5 2 5 5 5 2 6 4 5 2 1 3 5 2 1 5 3 
1 4 2 3 1 4 1 6 4 3 4 1 2 6 6 3 1 6 6 5 3 1 2 4 4 1 5 1 1 3 3 1 6 4 1 5 2 4 5 5 
4 1 3 4 5 3 5 6 3 5 6 2 2 6 2 5 3 4 4 5 4 4 5 4 3 2 3 6 3 5 4 6 2 4 6 3 5 2 6 6 
2 4 2 5 1 6 5 6 3 3 4 1 6 6 3 5 5 4 1 1 6 1 1 6 4 6 6 5 4 4 3 2 2 2 2 5 5 1 1 1 
6 1 3 2 1 6 6 4 2 5 3 6 2 3 5 6 2 5 5 2 3 2 5 1 2 3 6 6 6 4 2 1 4 3 2 3 2 5 3 1 
3 4 3 2 5 1 2 4 4 5 4 1 4 3 4 2 5 1 5 3 2 1 3 4 2 5 3 5 4 5 1 5 4 6 2 2 1 6 5 5 
5 1 1 1 3 6 6 3 4 4 4 3 4 1 5 1 2 2 1 6 6 1 2 5 1 5 1 2 6 5 5 6 1 6 3 4 2 2 2 5 
5 2 3 4 5 2 4 4 3 6 3 3 4 1 6 4 2 6 4 3 1 1 5 2 2 2 3 5 4 1 3 2 5 5 6 3 1 5 1 5 

uniform_real_distribution

auto seed = random_device()();
ranlux48 gen(seed);
uniform_real_distribution<> dist(18.0, 25.0);
for (int y=0; y<5; y++) {
    for (int x=0; x<10; x++)
        cout << fixed << setprecision(3) << dist(gen) << ' ';
    cout << '\n';
}
24.665 22.864 23.226 20.100 23.739 21.643 19.600 18.041 23.892 20.713 
21.677 22.659 19.975 21.875 19.614 20.721 20.177 22.414 22.721 23.138 
22.919 24.891 21.717 19.666 24.387 21.907 23.813 20.285 19.627 22.430 
21.304 22.587 20.188 21.686 22.157 23.831 23.432 20.706 21.117 24.619 
22.691 22.997 22.900 18.771 18.456 18.216 21.181 24.673 21.660 23.945 
OMG—what’s that <> doing there?

uniform_real_distribution’s template argument defaults to double, because … real.

Boolean Values

Yield true 42% of time:

random_device rd;
knuth_b gen(rd());
bernoulli_distribution dist(0.42);
constexpr int nrolls = 1'000'000;

int count=0;
for (int i=0; i<nrolls; i++)
    if (dist(gen))
        count++;

cout << "true: " << count*100.0/nrolls << "%\n";
true: 41.9693%

Histogram

random_device rd;
mt19937_64 gen(rd());
normal_distribution<> dist(21.5, 1.5);
map<int,int> tally;
for (int i=0; i<10000; i++)
    tally[dist(gen)]++;
for (auto p : tally)
    cout << p.first << ": " << string(p.second/100,'#') << '\n';
15: 
16: 
17: 
18: ###
19: ##########
20: #####################
21: ##########################
22: ####################
23: ##########
24: ###
25: 
26: 
27: 

Passwords

random_device rd;
auto seed = rd();
ranlux24 gen(seed);
uniform_int_distribution<char> dist('A','~');
for (int y=0; y<8; y++) {
    string pw;
    for (int x=0; x<32; x++)
        pw += dist(gen);
    cout << "Password: " << pw << '\n';
}
Password: [fpWFgly_QWbVgp}Je\OVGy|hr`FwSBQ
Password: ]Av\njnI]VJCfKBLMUj`YFJ_SQZObsMg
Password: nBuQeGVke_OYK_^STzlCyS|z{ziTw{Tx
Password: SBozGDJGpaxf[WS{~RJI~wl[CoHTGpeV
Password: |D]ohBkX[tI}E`EXoMk}s_kPltOUHGAm
Password: ^AjnE\rIeu{}n{p\XdMJXAVqXz_WX]CF
Password: U_Nc_SErmhWmItLTp~OwUMaM}YOAxvEw
Password: aa~QjHWJETOXyDIsCYO\ievs|P^_rMBJ

Even though we’re using uniform_int_distribution, which has int right there in its name, it’s uniform_int_distribution<char>, so we get characters. Think of them as 8-bit integers that display differently.