CS253: Software Development with C++

Spring 2022

Random Numbers

Show Lecture.RandomNumbers as a slide show.

CS253 Random Numbers

Inclusion

To use C++ random numbers, you need to:

    
#include <random>

To use old C random numbers (don’t ), you need to:

    
#include <cstdlib>

Philosophy

“Computers can’t do anything truly random. Only a person can do that.”

Old Stuff

Patron Saint of Randomness

Traditional Method

Traditional random number generators work like this:

unsigned long n = 1;
for (int i=0; i<5; i++) {
    n = n * 16807 % 2147483647;
    cout << n << '\n';
}
16807
282475249
1622650073
984943658
1144108930

Overview

Generators

EngineDescription
default_random_engineDefault random engine
minstd_randMinimal Standard minstd_rand generator
minstd_rand0Minimal Standard minstd_rand0 generator
mt19937Mersenne Twister 19937 generator
mt19937_64Mersenne Twister 19937 generator (64 bit)
ranlux24_baseRanlux 24 base generator
ranlux48_baseRanlux 48 base generator
ranlux24Ranlux 24 generator
ranlux48Ranlux 48 generator
knuth_bKnuth-B generator
random_deviceTrue random number generator

Default Engine

Define a random-number generator, and use () to generate a number. This is not a function call, because gen is an object, not a function. It’s operator().







🤨 That sequence looks familiar …

#include <random>
#include <iostream>
using namespace std;

int main() {
    default_random_engine gen;
    for (int i=0; i<5; i++)
        cout << gen() << '\n';
}
16807
282475249
1622650073
984943658
1144108930

I won’t bother with the #includes in subsequent examples.

Mersenne Twister

mt19937_64 gen;
cout << "range is " << gen.min() << "…" << gen.max() << "\n\n";
for (int i=0; i<3; i++)
    cout << gen() << '\n';
range is 0…18446744073709551615

14514284786278117030
4620546740167642908
13109570281517897720

Ranges

Generators have varying ranges:

ranlux24 rl;
minstd_rand mr;
random_device rd;
mt19937_64 mt;

cout << "ranlux24:      " << rl.min() << "…" << rl.max() << '\n'
     << "minstd_rand:   " << mr.min() << "…" << mr.max() << '\n'
     << "random_device: " << rd.min() << "…" << rd.max() << '\n'
     << "mt19937_64:    " << mt.min() << "…" << mt.max() << '\n';
ranlux24:      0…16777215
minstd_rand:   1…2147483646
random_device: 0…4294967295
mt19937_64:    0…18446744073709551615

Hey, look! Zero is not a possible return value for minstd_rand.

Save/Restore

A generator can save & restore state to an I/O stream:

ranlux24 gen;
cout << gen() << ' ';
cout << gen() << endl;
ofstream("state") << gen;
system("wc -c state");
cout << gen() << ' ';
cout << gen() << '\n';
ifstream("state") >> gen;
cout << gen() << ' ';
cout << gen() << '\n';
15039276 16323925
209 state
14283486 7150092
14283486 7150092
endl! Isn’t that a sin? 😈 🔥

Needed to flush output before wc ran.

True randomness

random_device a, b, c;
cout << a() << '\n'
     << b() << '\n'
     << c() << '\n';
778082440
2409031190
4114114827

Cloudflare

The hosting service Cloudflare uses a unique source of randomness.

a picture of Cloudfare’s wall of lava lamps

Seeding

minstd_rand a, b, c(123);
cout << a() << ' ' << a() << '\n';
cout << b() << ' ' << b() << '\n';
cout << c() << ' ' << c() << '\n';
48271 182605794
48271 182605794
5937333 985676192

Seed with process ID

auto seed = getpid();
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
2128048799
310805931
592337359
1119380131
762261334

Seed with time

// seconds since start of 1970
auto seed = time(nullptr);
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1645474067
1848520215
1973765415
370864663
584466281

Seed with more accurate time

Nanoseconds make more possibilities:

auto seed = chrono::high_resolution_clock::now()
            .time_since_epoch().count();
cout << "Seed: " << seed << '\n';
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
Seed: 1732266086563710003
1427866592
1060611967
790114577
311175647
1259029219

Better Seeding

Seed with random_device

random_device rd;
auto seed = rd();
minstd_rand0 a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
440497032
1057485615
586068733
1697190389
1801068469

You can seed with random_device, if you know that it’s truly random.

Not good enough.

Caution

Resist the urge to hack your own distribution—it’s hard. Just use the standard distributions.

minstd_rand r;
int first_half = 0;
for (int i=0; i<100'000'000; i++)
    if (r() % 1'000'000'000 < 500'000'000)
        first_half++;
cout << first_half << '\n';
53435616
Shouldn’t the result be close to 500 million?

minstd_rand, on this computer, produces a number 1…2,147,483,646. If you take that mod a billion, the range 1…147,473,646 appears three times, whereas 147,473,647…999,999,999 only appears twice, so 1…147,473,646 is overrepresented. Tricky to get right!

Distributions

uniform_int_distribution

auto seed = random_device()();  //❓❓❓
mt19937 gen(seed);
uniform_int_distribution<int> dist(1,6);
for (int y=0; y<10; y++) {
    for (int x=0; x<40; x++)
        cout << dist(gen) << ' ';
    cout << '\n';
}
6 2 6 5 6 1 1 2 2 4 4 6 3 2 3 5 2 6 1 1 1 4 2 4 2 6 4 2 3 6 1 2 2 5 2 6 3 2 3 4 
2 6 6 4 4 4 5 6 4 2 4 1 4 6 6 6 4 6 1 6 2 5 3 6 4 4 4 5 1 3 4 6 5 5 4 6 1 5 5 3 
1 2 6 2 3 4 3 2 1 2 2 6 6 4 2 4 2 6 1 1 3 3 3 1 1 6 1 6 3 3 6 4 5 5 1 1 5 1 3 3 
6 1 5 6 4 6 1 3 3 4 3 2 5 4 3 1 4 4 5 1 3 2 1 2 5 5 5 1 2 1 4 6 5 5 3 2 5 3 2 6 
2 5 1 5 1 2 6 4 4 1 4 2 2 2 1 6 3 5 1 1 5 2 2 4 2 6 6 1 6 2 1 6 2 5 2 4 1 3 1 3 
6 4 4 1 6 5 5 3 5 5 1 4 5 2 5 6 5 1 5 4 3 5 3 2 6 3 3 5 2 3 5 3 3 3 4 2 2 6 4 4 
6 4 2 1 5 4 2 3 6 4 4 2 3 3 3 1 6 3 6 6 2 2 5 1 4 4 5 5 5 3 4 4 6 3 3 5 1 4 2 3 
4 4 5 3 4 3 1 2 4 5 6 5 4 3 5 2 2 3 2 5 4 4 3 1 6 2 3 1 2 3 3 3 6 1 5 6 2 3 2 4 
4 4 6 3 1 5 4 5 5 6 2 2 3 1 5 5 2 5 4 4 3 3 2 6 6 3 5 5 5 6 5 1 2 3 5 3 6 6 1 2 
2 5 6 4 2 6 5 4 2 2 1 2 1 1 3 6 6 1 2 2 2 2 5 6 4 5 1 6 2 5 5 6 6 2 6 6 1 1 2 1 

uniform_real_distribution

auto seed = random_device()();
ranlux48 gen(seed);
uniform_real_distribution<> dist(18.0, 25.0);
for (int y=0; y<5; y++) {
    for (int x=0; x<10; x++)
        cout << fixed << setprecision(3) << dist(gen) << ' ';
    cout << '\n';
}
20.605 18.641 19.202 22.767 22.879 21.182 21.226 22.260 21.077 20.630 
22.521 19.338 19.710 24.092 24.074 20.406 24.183 21.663 18.471 23.200 
20.861 24.698 24.623 21.250 19.342 24.500 22.821 24.829 19.563 22.032 
21.938 19.347 20.633 18.718 19.659 23.042 19.070 22.691 22.089 18.599 
18.455 19.530 19.521 24.520 23.007 21.104 18.309 21.649 24.817 24.835 
OMG—what’s that <> doing there?

uniform_real_distribution’s template argument defaults to double, because … real.

Boolean Values

Yield true 42% of time:

random_device rd;
knuth_b gen(rd());
bernoulli_distribution dist(0.42);
constexpr int nrolls = 1'000'000;

int count=0;
for (int i=0; i<nrolls; i++)
    if (dist(gen))
        count++;

cout << "true: " << count*100.0/nrolls << "%\n";
true: 41.9189%

Histogram

random_device rd;
mt19937_64 gen(rd());
normal_distribution<> dist(21.5, 1.5);
map<int,int> tally;
for (int i=0; i<10000; i++)
    tally[dist(gen)]++;
for (auto p : tally)
    cout << p.first << ": " << string(p.second/100,'#') << '\n';
15: 
16: 
17: 
18: ###
19: ##########
20: #####################
21: #########################
22: #####################
23: ##########
24: ###
25: 
26: 
27: 

Passwords

random_device rd;
auto seed = rd();
ranlux24 gen(seed);
uniform_int_distribution<char> dist('A','~');
for (int y=0; y<8; y++) {
    string pw;
    for (int x=0; x<32; x++)
        pw += dist(gen);
    cout << "Password: " << pw << '\n';
}
Password: UIsOjz]pFubIkDsMVshuPpVFocXzp\BF
Password: UYeduC\XVpIRhZ}LLMyNNK}}^{cCFubO
Password: `JVXxsZpAFGDwcqfp[aDWUMiYv{y}wAX
Password: Wvqvm}y\~VVhJM\Vxthu[iMOEsa{lwZu
Password: }EPF]GzFVolfyNLzSweSCK^pt}B{R|~A
Password: }VvlND_INhd~_Xhq[vf[{zbtkDLbkzWc
Password: axB{hCwljfwAIYEQajfhHD]OAiaXSew]
Password: FBwQ]B_]YNoLnwzOFw~yZ`j`nVZYBarw

Even though we’re using uniform_int_distribution, which has int right there in its name, it’s uniform_int_distribution<char>, so we get characters. Think of them as 8-bit integers that display differently.