CS253: Software Development with C++

Spring 2021

Random Numbers

Show Lecture.RandomNumbers as a slide show.

CS253 Random Numbers

Philosophy

“Computers can’t do anything truly random. Only a person can do that.”

Old Stuff

Traditional Method

Traditional random number generators work like this:

unsigned long n = 1;
for (int i=0; i<5; i++) {
    n = n * 16807 % 2147483647;
    cout << n << '\n';
}
16807
282475249
1622650073
984943658
1144108930

Overview

Generators

EngineDescription
default_random_engineDefault random engine
minstd_randMinimal Standard minstd_rand generator
minstd_rand0Minimal Standard minstd_rand0 generator
mt19937Mersenne Twister 19937 generator
mt19937_64Mersenne Twister 19937 generator (64 bit)
ranlux24_baseRanlux 24 base generator
ranlux48_baseRanlux 48 base generator
ranlux24Ranlux 24 generator
ranlux48Ranlux 48 generator
knuth_bKnuth-B generator
random_deviceTrue random number generator

Default Engine

Define a random-number generator, and use () to generate a number. This is not a function call, because gen is an object, not a function. It’s operator().










That sequence looks familiar …

#include <random>
#include <iostream>
using namespace std;

int main() {
    default_random_engine gen;
    for (int i=0; i<5; i++)
        cout << gen() << '\n';
}
16807
282475249
1622650073
984943658
1144108930

I won’t bother with the #includes in subsequent examples.

Mersenne Twister

mt19937_64 gen;
cout << "range is " << gen.min() << "…" << gen.max() << "\n\n";
for (int i=0; i<3; i++)
    cout << gen() << '\n';
range is 0…18446744073709551615

14514284786278117030
4620546740167642908
13109570281517897720

Ranges

Generators have varying ranges:

ranlux24 rl;
minstd_rand mr;
random_device rd;
mt19937_64 mt;

cout << "ranlux24:      " << rl.min() << "…" << rl.max() << '\n'
     << "minstd_rand:   " << mr.min() << "…" << mr.max() << '\n'
     << "random_device: " << rd.min() << "…" << rd.max() << '\n'
     << "mt19937_64:    " << mt.min() << "…" << mt.max() << '\n';
ranlux24:      0…16777215
minstd_rand:   1…2147483646
random_device: 0…4294967295
mt19937_64:    0…18446744073709551615

Hey, look! Zero is not a possible return value for minstd_rand.

Save/Restore

A generator can save & restore state to an I/O stream:

ranlux24 gen;
cout << gen() << ' ';
cout << gen() << endl;
ofstream("state") << gen;
system("wc -c state");
cout << gen() << ' ';
cout << gen() << '\n';
ifstream("state") >> gen;
cout << gen() << ' ';
cout << gen() << '\n';
15039276 16323925
209 state
14283486 7150092
14283486 7150092
endl! Isn’t that a sin? 😈 🔥

Needed to flush output before wc ran.

True randomness

random_device a, b, c;
cout << a() << '\n'
     << b() << '\n'
     << c() << '\n';
3350296188
164000301
2137125806

Cloudflare

The hosting service Cloudflare uses a unique source of randomness.

Seeding

minstd_rand a, b, c(123);
cout << a() << ' ' << a() << '\n';
cout << b() << ' ' << b() << '\n';
cout << c() << ' ' << c() << '\n';
48271 182605794
48271 182605794
5937333 985676192

Seed with process ID

auto seed = getpid();
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
547170176
550191243
351228404
1910380066
860880059

Seed with time

// seconds since start of 1970
auto seed = time(nullptr);
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1234141199
2033449149
1588817950
747779139
1141679893

Seed with more accurate time

Nanoseconds make more possibilities:

auto seed = chrono::high_resolution_clock::now()
            .time_since_epoch().count();
cout << "Seed: " << seed << '\n';
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
Seed: 1727408365815059533
1222982743
274531323
1927390543
1634862172
702844656

Better Seeding

Seed with random_device

random_device rd;
auto seed = rd();
minstd_rand0 a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1512994236
540260325
594422759
369384669
2020392053

You can seed with random_device, if you know that it’s truly random.

Not good enough.

Caution

Distributions

uniform_int_distribution

auto seed = random_device()();  //❓❓❓
mt19937 gen(seed);
uniform_int_distribution<int> dist(1,6);
for (int y=0; y<10; y++) {
    for (int x=0; x<40; x++)
        cout << dist(gen) << ' ';
    cout << '\n';
}
1 2 6 3 5 5 5 1 2 5 4 5 6 5 1 2 5 1 3 2 4 4 5 6 1 1 4 5 3 6 2 6 6 4 3 6 6 2 1 2 
1 2 6 5 3 1 4 4 2 3 1 5 6 4 6 3 4 2 6 5 1 1 5 1 3 3 5 6 2 2 1 4 6 1 2 3 6 3 1 5 
2 2 5 4 2 6 3 6 6 4 2 5 6 3 4 3 2 5 4 3 1 1 5 3 2 3 5 1 5 4 6 1 4 2 3 4 5 3 6 3 
1 5 2 2 1 4 6 2 2 5 6 6 6 4 3 2 1 2 3 4 6 3 6 1 1 4 3 2 3 4 5 3 2 5 6 3 2 4 1 3 
4 5 3 5 1 1 1 3 3 3 1 5 5 2 6 1 4 5 1 2 4 5 4 1 6 3 3 3 1 2 1 6 1 1 2 4 6 1 2 3 
1 6 4 4 1 4 4 1 2 6 4 6 5 6 1 3 3 3 1 3 4 4 3 2 4 6 5 4 2 5 6 5 5 2 4 3 4 6 6 5 
4 6 3 1 4 5 1 2 6 3 4 5 1 4 5 6 2 4 5 4 5 2 5 2 4 3 4 2 5 2 2 4 5 4 1 6 1 5 4 2 
3 6 6 5 4 1 6 1 2 6 6 3 4 6 3 3 2 4 2 1 4 2 2 3 2 4 2 5 4 3 2 6 5 2 5 5 2 4 2 6 
2 3 4 3 6 2 3 6 5 5 5 1 6 1 6 5 1 1 6 3 3 3 6 6 4 5 3 1 6 4 1 6 5 3 3 2 5 5 4 5 
1 1 1 1 2 5 3 4 4 3 2 3 3 2 1 6 1 5 4 4 2 1 1 1 4 3 1 1 2 1 2 6 5 3 6 2 4 3 3 3 

uniform_real_distribution

auto seed = random_device()();
ranlux48 gen(seed);
uniform_real_distribution<> dist(18.0, 25.0);
for (int y=0; y<5; y++) {
    for (int x=0; x<10; x++)
        cout << fixed << setprecision(3) << dist(gen) << ' ';
    cout << '\n';
}
21.086 24.494 22.773 19.101 18.666 22.606 19.500 21.566 24.407 23.742 
21.834 23.499 22.952 24.999 22.558 21.046 18.931 20.872 24.515 23.794 
22.025 22.018 22.180 20.144 24.334 22.023 20.929 18.270 24.228 24.982 
23.634 24.294 22.410 22.056 21.563 18.095 23.609 18.928 19.899 24.864 
24.085 24.516 20.204 21.120 23.653 19.034 23.261 18.204 20.925 19.093 
OMG—what’s that <> doing there?

uniform_real_distribution’s template argument defaults to double, because … real.

Boolean Values

Yield true 42% of time:

random_device rd;
knuth_b gen(rd());
bernoulli_distribution dist(0.42);
constexpr int nrolls = 1'000'000;

int count=0;
for (int i=0; i<nrolls; i++)
    if (dist(gen))
        count++;

cout << "true: " << count*100.0/nrolls << "%\n";
true: 42.0184%

Histogram

random_device rd;
mt19937_64 gen(rd());
normal_distribution<> dist(21.5, 1.5);
map<int,int> tally;
for (int i=0; i<10000; i++)
    tally[dist(gen)]++;
for (auto p : tally)
    cout << p.first << ": " << string(p.second/100,'#') << '\n';
15: 
16: 
17: 
18: ###
19: ###########
20: ######################
21: #########################
22: ####################
23: ###########
24: ###
25: 
26: 
27: 

Passwords

random_device rd;
auto seed = rd();
ranlux24 gen(seed);
uniform_int_distribution<char> dist('A','~');
for (int y=0; y<8; y++) {
    string pw;
    for (int x=0; x<32; x++)
        pw += dist(gen);
    cout << "Password: " << pw << '\n';
}
Password: jdUxiU^mAaDVy^j|\D^jvz]^MZTsnY}F
Password: ZbNZAUQnRdPW_GTWgTYPow]GnnPWMMjF
Password: WpHZfyJhq{RQspHq\]GQVoSGInd_c|KX
Password: OmcOhb~iIlm]`~AC}EuduX\d[WsRQwhI
Password: HR}h]hUZaN_VRa[AxsXuW_{i}UkcmW|m
Password: \gsmcJ\TloBnLhg{OEijhJhQuv]|Mjvo
Password: z|TIBhlLvuYL}v`GxoFxMOOHKSqmT]F[
Password: a~JD^xjYP]|Lwctudo|QFrZpigSPvPFJ

Even though we’re using uniform_int_distribution, which has int right there in its name, it’s uniform_int_distribution<char>, so we get characters. Think of them as 8-bit integers that display differently.