Show Lecture.RandomNumbers as a slide show.
CS253 Random Numbers
Philosophy
“Computers can’t do anything truly random. Only a person can do that.”
- Stop trying to prove your superiority.
- If you believe that you have something special that distinguishes you
from machines, you’re talking religion, not CS.
- My dog is pretty random.
- You’re somewhat predictable.
- An online rock-paper-scissors
program beats people 60% of the time over more than a million games,
because people are lousy at being random.
Old Stuff
- There are several C random number generators,
of varying degrees of standardization:
- They still work ok, but avoid them for new C++ code.
- They mix up generation and distribution something terrible.
- Also, each family has a separate seeding function.
- Also also, there’s no way to save/restore state!
Traditional Method
Traditional random number generators work like this:
unsigned long n = 1;
for (int i=0; i<5; i++) {
n = n * 16807 % 2147483647;
cout << n << '\n';
}
16807
282475249
1622650073
984943658
1144108930
- It’s fast, simple, and good enough for many tasks. However …
- What happens if
n
is zero?
- What number always follows 16807?
- How many possible states does this RNG
(Random Number Generator) have?
Overview
- In C++, random numbers have:
- Generators
Generate uniformly-distributed random integers,
typically zero or one to a big number.
- Distributions
Take uniformly-distributed random integers, and transform them into
other distributions with different ranges.
- Examples:
- Picking a card (uniform, but discrete)
- Rolling 3d6 (bell-shaped, but discrete)
- Human height (bell-shaped, continuous)
Generators
Default Engine
Define a random-number generator, and use ()
to generate a number.
This is not a function call, because gen
is an object, not a
function. It’s operator()
.
That sequence looks familiar …
#include <random>
#include <iostream>
using namespace std;
int main() {
default_random_engine gen;
for (int i=0; i<5; i++)
cout << gen() << '\n';
}
16807
282475249
1622650073
984943658
1144108930
I won’t bother with the #includes in subsequent examples.
Mersenne Twister
- Here’s a different, 64-bit generator.
- Use
.min()
and .max()
to find out the range of a given generator.
mt19937_64 gen;
cout << "range is " << gen.min() << "…" << gen.max() << "\n\n";
for (int i=0; i<3; i++)
cout << gen() << '\n';
range is 0…18446744073709551615
14514284786278117030
4620546740167642908
13109570281517897720
Ranges
Generators have varying ranges:
ranlux24 rl;
minstd_rand mr;
random_device rd;
mt19937_64 mt;
cout << "ranlux24: " << rl.min() << "…" << rl.max() << '\n'
<< "minstd_rand: " << mr.min() << "…" << mr.max() << '\n'
<< "random_device: " << rd.min() << "…" << rd.max() << '\n'
<< "mt19937_64: " << mt.min() << "…" << mt.max() << '\n';
ranlux24: 0…16777215
minstd_rand: 1…2147483646
random_device: 0…4294967295
mt19937_64: 0…18446744073709551615
Hey, look! Zero is not a possible return value for minstd_rand.
Save/Restore
A generator can save & restore state to an I/O stream:
ranlux24 gen;
cout << gen() << ' ';
cout << gen() << endl;
ofstream("state") << gen;
system("wc -c state");
cout << gen() << ' ';
cout << gen() << '\n';
ifstream("state") >> gen;
cout << gen() << ' ';
cout << gen() << '\n';
15039276 16323925
209 state
14283486 7150092
14283486 7150092
endl! Isn’t that a sin? 😈 🔥
Needed to flush output before wc ran.
True randomness
random_device a, b, c;
cout << a() << '\n'
<< b() << '\n'
<< c() << '\n';
2685686491
2070513966
2934722527
- random_device is, ideally, truly random, and not pseudo-random.
- Intel computers have an RDRAND instruction.
- It might depend on random things like human typing intervals,
network packets arrival times, or radioactive decay.
- If true randomness isn’t available, it resorts to pseudo-random numbers.
- It could pause waiting for randomness to become available.
- Use it sparingly.
Cloudflare
The hosting service Cloudflare uses a unique source of randomness.
Seeding
minstd_rand a, b, c(123);
cout << a() << ' ' << a() << '\n';
cout << b() << ' ' << b() << '\n';
cout << c() << ' ' << c() << '\n';
48271 182605794
48271 182605794
5937333 985676192
- Great—we can “seed” the random number generator with a value.
- This way, we can reproduce our pseudo-random sequences.
- Consider random testing: we want to be able to reproduce the sequence
if we find an error.
- How to choose the random seed?
- It should probably be … random.
Seed with process ID
auto seed = getpid();
minstd_rand a(seed);
for (int i=0; i<5; i++)
cout << a() << '\n';
291267899
217315720
1736988172
1952020791
855622942
- You can seed with your process id.
- OK for casual use, but the seed is easily guessed.
- Process IDs are usually 15- or 16-bit quantities, so there are
generally only 32768 or 65536 of them.
Somebody could easily try them all.
Seed with time
// seconds since start of 1970
auto seed = time(nullptr);
minstd_rand a(seed);
for (int i=0; i<5; i++)
cout << a() << '\n';
1096632797
89845437
1159606134
1186435259
1322488993
- You can seed with a time-related value.
- Two runs may occur within the same second,
and so produce identical random sequences.
- OK for casual use, but the seed is easily guessed.
- There are only 86,400 seconds in a day.
Somebody could easily try them all.
Seed with more accurate time
Nanoseconds make more possibilities:
auto seed = chrono::high_resolution_clock::now()
.time_since_epoch().count();
cout << "Seed: " << seed << '\n';
minstd_rand a(seed);
for (int i=0; i<5; i++)
cout << a() << '\n';
Seed: 1732254716305733032
945387808
787381218
1513189472
807717501
1765879486
- There are 86,400,000,000,000 nanoseconds in a day.
Better Seeding
- Many generators have more than 32 or 64 bits of state.
- Therefore, you can seed them with more than 32 or 64 bits.
- If you’re doing something very important, and somebody guessing
your seed, and hence predicting your sequence, would be catastrophic:
- on-line poker
🂺 🂻 🂽 🂾 🂱
- encryption of military communications
⚔️ 🔫 💣 🥆 ☢️
- encrypted email re: extra-marital affairs 💔
- That’s beyond the scope of this discussion.
Seed with random_device
random_device rd;
auto seed = rd();
minstd_rand0 a(seed);
for (int i=0; i<5; i++)
cout << a() << '\n';
885553473
1435547001
259671762
616533230
465399835
You can seed with random_device, if you know that
it’s truly random.
Not good enough.
- Great, so we know how to generate a number 1…2,147,483,646
or perhaps 0…18,446,744,073,709,551,615
- How often do we want to do that?
- Sometimes, we want integers with different ranges.
- Or, perhaps we want floating-point numbers.
- Maybe spread out linearly, or a bell-shaped curve, Poisson, etc.
- This is a job for a distribution.
Caution
- Resist the urge to create your own distribution using division
or modulus.
- This is harder than you think.
- Your home-grown code will by off by one, or have some bias because
the range of the generator isn’t a perfect multiple of what you want.
- Just use the standard distributions.
Distributions
- Uniform:
- Bernoulli (yes/no) trials:
- Piecewise distributions:
|
- Related to Normal distribution:
- Rate-based distributions:
|
uniform_int_distribution
auto seed = random_device()(); //❓❓❓
mt19937 gen(seed);
uniform_int_distribution<int> dist(1,6);
for (int y=0; y<10; y++) {
for (int x=0; x<40; x++)
cout << dist(gen) << ' ';
cout << '\n';
}
5 3 1 2 4 5 5 1 3 2 2 4 4 2 4 1 3 3 5 2 4 1 2 6 4 1 1 6 4 3 5 2 6 4 2 3 3 3 1 2
6 4 5 4 2 1 3 2 4 5 5 2 3 2 4 6 2 1 4 3 5 2 2 4 2 3 5 6 1 5 4 3 5 2 1 4 6 5 5 4
6 4 5 3 3 5 3 3 6 2 3 1 3 1 5 1 4 6 2 5 2 5 2 2 6 2 5 4 6 3 5 2 2 6 3 1 1 5 5 5
2 4 4 5 1 2 2 2 2 4 1 3 3 2 4 4 1 4 2 5 2 1 4 6 5 6 5 1 4 3 5 2 1 2 2 1 1 2 3 3
5 1 2 6 1 2 6 1 2 5 1 2 2 4 2 3 5 6 1 5 5 1 6 3 3 1 4 4 2 2 3 6 2 6 3 5 2 1 3 1
2 4 1 5 4 2 5 3 3 2 5 6 5 3 5 6 3 2 2 6 3 4 6 1 5 5 4 1 2 4 3 3 1 1 3 1 2 3 4 3
6 1 5 5 4 6 5 6 5 1 6 5 6 1 6 2 2 5 1 1 6 5 3 4 2 4 6 4 1 5 5 1 3 5 3 1 5 4 3 4
3 1 4 6 1 5 4 3 6 3 6 4 4 2 4 3 5 6 4 3 3 6 3 2 5 1 5 5 2 3 4 4 5 3 3 5 6 3 6 6
4 1 6 2 4 4 2 6 6 2 6 3 4 5 5 3 3 3 2 5 1 1 3 6 4 5 5 4 4 4 1 2 2 1 6 6 1 2 6 6
2 1 4 6 3 5 4 2 5 5 2 6 1 1 6 6 1 6 4 5 3 6 4 1 5 1 2 5 2 4 1 5 5 5 4 6 5 6 1 4
uniform_real_distribution
auto seed = random_device()();
ranlux48 gen(seed);
uniform_real_distribution<> dist(18.0, 25.0);
for (int y=0; y<5; y++) {
for (int x=0; x<10; x++)
cout << fixed << setprecision(3) << dist(gen) << ' ';
cout << '\n';
}
22.412 24.413 22.529 18.091 24.229 23.622 21.882 21.874 24.510 21.207
19.313 24.829 21.392 18.898 24.615 23.717 23.664 19.989 24.360 24.503
19.583 19.689 23.964 19.566 18.087 24.640 18.373 23.241 21.463 20.722
20.760 24.162 20.277 24.001 19.411 20.064 22.910 18.653 22.141 21.075
18.800 20.381 21.311 19.344 22.389 20.126 24.685 20.104 22.698 20.410
OMG—what’s that <>
doing there?
uniform_real_distribution’s template argument defaults to double,
because … real
.
Boolean Values
Yield true 42% of time:
random_device rd;
knuth_b gen(rd());
bernoulli_distribution dist(0.42);
constexpr int nrolls = 1'000'000;
int count=0;
for (int i=0; i<nrolls; i++)
if (dist(gen))
count++;
cout << "true: " << count*100.0/nrolls << "%\n";
true: 41.9839%
Histogram
random_device rd;
mt19937_64 gen(rd());
normal_distribution<> dist(21.5, 1.5);
map<int,int> tally;
for (int i=0; i<10000; i++)
tally[dist(gen)]++;
for (auto p : tally)
cout << p.first << ": " << string(p.second/100,'#') << '\n';
14:
15:
16:
17:
18: ###
19: ###########
20: ####################
21: #########################
22: #####################
23: ##########
24: ###
25:
26:
27:
Passwords
random_device rd;
auto seed = rd();
ranlux24 gen(seed);
uniform_int_distribution<char> dist('A','~');
for (int y=0; y<8; y++) {
string pw;
for (int x=0; x<32; x++)
pw += dist(gen);
cout << "Password: " << pw << '\n';
}
Password: LDHl^m\e|SKemxddn~it{vx}NaMlPuuF
Password: VOn{msRAVXSZHZDt~SrW]|^XLddEfApT
Password: AXwUXEeVzqH~FLbJKo[OBhQGFHM`Cr{W
Password: oYgfifPZyCdh^C\lWP~CTfWoZY^PptUz
Password: {LW`J_udnCf~[}MXXiaUdAIx[bG\zwM_
Password: gRMhOropOSKAsti]pV^`Lar\QEcUj}tt
Password: kr`rpdlVko]NyX`\uS`bmJd~gFURvUDz
Password: wHj`AuBAubOprofMTmhyKxraBLC[QkPL
Even though we’re using uniform_int_distribution, which has int
right there in its name, it’s
uniform_int_distribution<char>
, so we get characters.
Think of them as 8-bit integers that display differently.