CS253: Software Development with C++

Spring 2021

Random Numbers

Show Lecture.RandomNumbers as a slide show.

CS253 Random Numbers

Philosophy

“Computers can’t do anything truly random. Only a person can do that.”

Old Stuff

Traditional Method

Traditional random number generators work like this:

unsigned long n = 1;
for (int i=0; i<5; i++) {
    n = n * 16807 % 2147483647;
    cout << n << '\n';
}
16807
282475249
1622650073
984943658
1144108930

Overview

Generators

EngineDescription
default_random_engineDefault random engine
minstd_randMinimal Standard minstd_rand generator
minstd_rand0Minimal Standard minstd_rand0 generator
mt19937Mersenne Twister 19937 generator
mt19937_64Mersenne Twister 19937 generator (64 bit)
ranlux24_baseRanlux 24 base generator
ranlux48_baseRanlux 48 base generator
ranlux24Ranlux 24 generator
ranlux48Ranlux 48 generator
knuth_bKnuth-B generator
random_deviceTrue random number generator

Default Engine

Define a random-number generator, and use () to generate a number. This is not a function call, because gen is an object, not a function. It’s operator().










That sequence looks familiar …

#include <random>
#include <iostream>
using namespace std;

int main() {
    default_random_engine gen;
    for (int i=0; i<5; i++)
        cout << gen() << '\n';
}
16807
282475249
1622650073
984943658
1144108930

I won’t bother with the #includes in subsequent examples.

Mersenne Twister

mt19937_64 gen;
cout << "range is " << gen.min() << "…" << gen.max() << "\n\n";
for (int i=0; i<3; i++)
    cout << gen() << '\n';
range is 0…18446744073709551615

14514284786278117030
4620546740167642908
13109570281517897720

Ranges

Generators have varying ranges:

ranlux24 rl;
minstd_rand mr;
random_device rd;
mt19937_64 mt;

cout << "ranlux24:      " << rl.min() << "…" << rl.max() << '\n'
     << "minstd_rand:   " << mr.min() << "…" << mr.max() << '\n'
     << "random_device: " << rd.min() << "…" << rd.max() << '\n'
     << "mt19937_64:    " << mt.min() << "…" << mt.max() << '\n';
ranlux24:      0…16777215
minstd_rand:   1…2147483646
random_device: 0…4294967295
mt19937_64:    0…18446744073709551615

Hey, look! Zero is not a possible return value for minstd_rand.

Save/Restore

A generator can save & restore state to an I/O stream:

ranlux24 gen;
cout << gen() << ' ';
cout << gen() << endl;
ofstream("state") << gen;
system("wc -c state");
cout << gen() << ' ';
cout << gen() << '\n';
ifstream("state") >> gen;
cout << gen() << ' ';
cout << gen() << '\n';
15039276 16323925
209 state
14283486 7150092
14283486 7150092
endl! Isn’t that a sin? 😈 🔥

Needed to flush output before wc ran.

True randomness

random_device a, b, c;
cout << a() << '\n'
     << b() << '\n'
     << c() << '\n';
2685686491
2070513966
2934722527

Cloudflare

The hosting service Cloudflare uses a unique source of randomness.

Seeding

minstd_rand a, b, c(123);
cout << a() << ' ' << a() << '\n';
cout << b() << ' ' << b() << '\n';
cout << c() << ' ' << c() << '\n';
48271 182605794
48271 182605794
5937333 985676192

Seed with process ID

auto seed = getpid();
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
291267899
217315720
1736988172
1952020791
855622942

Seed with time

// seconds since start of 1970
auto seed = time(nullptr);
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1096632797
89845437
1159606134
1186435259
1322488993

Seed with more accurate time

Nanoseconds make more possibilities:

auto seed = chrono::high_resolution_clock::now()
            .time_since_epoch().count();
cout << "Seed: " << seed << '\n';
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
Seed: 1732254716305733032
945387808
787381218
1513189472
807717501
1765879486

Better Seeding

Seed with random_device

random_device rd;
auto seed = rd();
minstd_rand0 a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
885553473
1435547001
259671762
616533230
465399835

You can seed with random_device, if you know that it’s truly random.

Not good enough.

Caution

Distributions

uniform_int_distribution

auto seed = random_device()();  //❓❓❓
mt19937 gen(seed);
uniform_int_distribution<int> dist(1,6);
for (int y=0; y<10; y++) {
    for (int x=0; x<40; x++)
        cout << dist(gen) << ' ';
    cout << '\n';
}
5 3 1 2 4 5 5 1 3 2 2 4 4 2 4 1 3 3 5 2 4 1 2 6 4 1 1 6 4 3 5 2 6 4 2 3 3 3 1 2 
6 4 5 4 2 1 3 2 4 5 5 2 3 2 4 6 2 1 4 3 5 2 2 4 2 3 5 6 1 5 4 3 5 2 1 4 6 5 5 4 
6 4 5 3 3 5 3 3 6 2 3 1 3 1 5 1 4 6 2 5 2 5 2 2 6 2 5 4 6 3 5 2 2 6 3 1 1 5 5 5 
2 4 4 5 1 2 2 2 2 4 1 3 3 2 4 4 1 4 2 5 2 1 4 6 5 6 5 1 4 3 5 2 1 2 2 1 1 2 3 3 
5 1 2 6 1 2 6 1 2 5 1 2 2 4 2 3 5 6 1 5 5 1 6 3 3 1 4 4 2 2 3 6 2 6 3 5 2 1 3 1 
2 4 1 5 4 2 5 3 3 2 5 6 5 3 5 6 3 2 2 6 3 4 6 1 5 5 4 1 2 4 3 3 1 1 3 1 2 3 4 3 
6 1 5 5 4 6 5 6 5 1 6 5 6 1 6 2 2 5 1 1 6 5 3 4 2 4 6 4 1 5 5 1 3 5 3 1 5 4 3 4 
3 1 4 6 1 5 4 3 6 3 6 4 4 2 4 3 5 6 4 3 3 6 3 2 5 1 5 5 2 3 4 4 5 3 3 5 6 3 6 6 
4 1 6 2 4 4 2 6 6 2 6 3 4 5 5 3 3 3 2 5 1 1 3 6 4 5 5 4 4 4 1 2 2 1 6 6 1 2 6 6 
2 1 4 6 3 5 4 2 5 5 2 6 1 1 6 6 1 6 4 5 3 6 4 1 5 1 2 5 2 4 1 5 5 5 4 6 5 6 1 4 

uniform_real_distribution

auto seed = random_device()();
ranlux48 gen(seed);
uniform_real_distribution<> dist(18.0, 25.0);
for (int y=0; y<5; y++) {
    for (int x=0; x<10; x++)
        cout << fixed << setprecision(3) << dist(gen) << ' ';
    cout << '\n';
}
22.412 24.413 22.529 18.091 24.229 23.622 21.882 21.874 24.510 21.207 
19.313 24.829 21.392 18.898 24.615 23.717 23.664 19.989 24.360 24.503 
19.583 19.689 23.964 19.566 18.087 24.640 18.373 23.241 21.463 20.722 
20.760 24.162 20.277 24.001 19.411 20.064 22.910 18.653 22.141 21.075 
18.800 20.381 21.311 19.344 22.389 20.126 24.685 20.104 22.698 20.410 
OMG—what’s that <> doing there?

uniform_real_distribution’s template argument defaults to double, because … real.

Boolean Values

Yield true 42% of time:

random_device rd;
knuth_b gen(rd());
bernoulli_distribution dist(0.42);
constexpr int nrolls = 1'000'000;

int count=0;
for (int i=0; i<nrolls; i++)
    if (dist(gen))
        count++;

cout << "true: " << count*100.0/nrolls << "%\n";
true: 41.9839%

Histogram

random_device rd;
mt19937_64 gen(rd());
normal_distribution<> dist(21.5, 1.5);
map<int,int> tally;
for (int i=0; i<10000; i++)
    tally[dist(gen)]++;
for (auto p : tally)
    cout << p.first << ": " << string(p.second/100,'#') << '\n';
14: 
15: 
16: 
17: 
18: ###
19: ###########
20: ####################
21: #########################
22: #####################
23: ##########
24: ###
25: 
26: 
27: 

Passwords

random_device rd;
auto seed = rd();
ranlux24 gen(seed);
uniform_int_distribution<char> dist('A','~');
for (int y=0; y<8; y++) {
    string pw;
    for (int x=0; x<32; x++)
        pw += dist(gen);
    cout << "Password: " << pw << '\n';
}
Password: LDHl^m\e|SKemxddn~it{vx}NaMlPuuF
Password: VOn{msRAVXSZHZDt~SrW]|^XLddEfApT
Password: AXwUXEeVzqH~FLbJKo[OBhQGFHM`Cr{W
Password: oYgfifPZyCdh^C\lWP~CTfWoZY^PptUz
Password: {LW`J_udnCf~[}MXXiaUdAIx[bG\zwM_
Password: gRMhOropOSKAsti]pV^`Lar\QEcUj}tt
Password: kr`rpdlVko]NyX`\uS`bmJd~gFURvUDz
Password: wHj`AuBAubOprofMTmhyKxraBLC[QkPL

Even though we’re using uniform_int_distribution, which has int right there in its name, it’s uniform_int_distribution<char>, so we get characters. Think of them as 8-bit integers that display differently.