CS253: Software Development with C++

Fall 2022

Random Numbers

Show Lecture.RandomNumbers as a slide show.

CS253 Random Numbers

Inclusion

To use C++ random numbers, you need to:

    
#include <random>

To use old C random numbers (don’t ), you need to:

    
#include <cstdlib>

Philosophy

“Computers can’t do anything truly random. Only a person can do that.”

Old Stuff

Patron Saint of Randomness

Traditional Method

Traditional random number generators work like this:

unsigned long n = 1;
for (int i=0; i<5; i++) {
    n = n * 16807 % 2147483647;
    cout << n << '\n';
}
16807
282475249
1622650073
984943658
1144108930

Overview

Generators

EngineDescription
default_random_engineDefault random engine
minstd_randMinimal Standard minstd_rand generator
minstd_rand0Minimal Standard minstd_rand0 generator
mt19937Mersenne Twister 19937 generator
mt19937_64Mersenne Twister 19937 generator (64 bit)
ranlux24_baseRanlux 24 base generator
ranlux48_baseRanlux 48 base generator
ranlux24Ranlux 24 generator
ranlux48Ranlux 48 generator
knuth_bKnuth-B generator
random_deviceTrue random number generator

Default Engine

Define a random-number generator, and use () to generate a number. This is not a function call, because gen is an object, not a function. It’s operator().







🤨 That sequence looks familiar …

#include <random>
#include <iostream>
using namespace std;

int main() {
    default_random_engine gen;
    for (int i=0; i<5; i++)
        cout << gen() << '\n';
}
16807
282475249
1622650073
984943658
1144108930

I won’t bother with the #includes in subsequent examples.

Mersenne Twister

mt19937_64 gen;
cout << "range is " << gen.min() << "…" << gen.max() << "\n\n";
for (int i=0; i<3; i++)
    cout << gen() << '\n';
range is 0…18446744073709551615

14514284786278117030
4620546740167642908
13109570281517897720

Ranges

Generators have varying ranges:

ranlux24 rl;
minstd_rand mr;
random_device rd;
mt19937_64 mt;

cout << "ranlux24:      " << rl.min() << "…" << rl.max() << '\n'
     << "minstd_rand:   " << mr.min() << "…" << mr.max() << '\n'
     << "random_device: " << rd.min() << "…" << rd.max() << '\n'
     << "mt19937_64:    " << mt.min() << "…" << mt.max() << '\n';
ranlux24:      0…16777215
minstd_rand:   1…2147483646
random_device: 0…4294967295
mt19937_64:    0…18446744073709551615

Hey, look! Zero is not a possible return value for minstd_rand.

Save/Restore

A generator can save & restore state to an I/O stream:

ranlux24 gen;
cout << gen() << ' ';
cout << gen() << endl;
ofstream("state") << gen;
system("wc -c state");
cout << gen() << ' ';
cout << gen() << '\n';
ifstream("state") >> gen;
cout << gen() << ' ';
cout << gen() << '\n';
15039276 16323925
209 state
14283486 7150092
14283486 7150092
endl! Isn’t that a sin? 😈 🔥

Needed to flush output before wc ran.

True randomness

random_device a, b, c;
cout << a() << '\n'
     << b() << '\n'
     << c() << '\n';
2749403236
379734022
1203931365

Cloudflare

The hosting service Cloudflare uses a unique source of randomness.

a picture of Cloudfare’s wall of lava lamps

Seeding

minstd_rand a, b, c(123);
cout << a() << ' ' << a() << '\n';
cout << b() << ' ' << b() << '\n';
cout << c() << ' ' << c() << '\n';
48271 182605794
48271 182605794
5937333 985676192

Seed with process ID

auto seed = getpid();
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1606056402
1788924242
697156065
1351665125
1379085721

Seed with time

// seconds since start of 1970
auto seed = time(nullptr);
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1874249993
582847640
455171093
658637746
1754726978

Seed with more accurate time

Nanoseconds make more possibilities:

auto seed = chrono::high_resolution_clock::now()
            .time_since_epoch().count();
cout << "Seed: " << seed << '\n';
minstd_rand a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
Seed: 1725063758428930836
779963574
2085864997
2018480592
596108395
614948892

Better Seeding

Seed with random_device

random_device rd;
auto seed = rd();
minstd_rand0 a(seed);
for (int i=0; i<5; i++)
    cout << a() << '\n';
1022712714
273473610
655958690
1664142779
420668125

You can seed with random_device, if you know that it’s truly random.

Not good enough.

Caution

Resist the urge to hack your own distribution—it’s hard. Just use the standard distributions.

minstd_rand r;
int first_half = 0;
for (int i=0; i<100'000'000; i++)
    if (r() % 1'000'000'000 < 500'000'000)
        first_half++;
cout << first_half << '\n';
53435616
Shouldn’t the result be close to 50 million?

minstd_rand, on this computer, produces a number 1…2,147,483,646. If you take that mod a billion, the range 1…147,473,646 appears three times, whereas 147,473,647…999,999,999 only appears twice, so 1…147,473,646 is overrepresented. Tricky to get right!

Distributions

uniform_int_distribution

auto seed = random_device()();  //❓❓❓
mt19937 gen(seed);
uniform_int_distribution<int> dist(1,6);
for (int y=0; y<10; y++) {
    for (int x=0; x<40; x++)
        cout << dist(gen) << ' ';
    cout << '\n';
}
5 1 5 6 2 6 6 5 2 6 3 4 3 4 2 3 1 5 3 3 4 6 6 1 1 3 1 1 1 1 4 6 2 2 4 1 2 1 3 5 
4 3 1 3 5 1 3 6 6 4 1 2 2 4 4 4 1 5 1 1 2 2 1 6 5 3 1 1 2 3 3 3 1 2 4 6 1 2 6 6 
6 5 3 3 2 5 6 5 6 3 3 2 5 4 5 6 6 6 4 2 2 3 1 4 5 5 2 6 6 1 5 2 6 6 2 5 3 3 5 2 
6 2 6 4 4 3 4 2 1 3 3 5 2 2 4 5 6 6 1 2 5 4 1 3 4 5 4 6 4 2 3 2 4 3 6 5 2 1 4 2 
1 6 2 4 4 3 3 4 6 5 5 4 3 5 1 4 3 5 4 2 3 1 4 1 1 6 6 4 6 1 1 1 6 2 3 3 5 1 6 6 
1 1 1 4 1 4 3 4 4 4 5 2 3 4 1 6 4 6 5 5 2 5 5 4 3 2 4 6 5 4 4 6 1 3 6 5 2 4 1 2 
1 3 3 4 2 6 3 1 5 6 2 1 3 1 6 3 2 4 1 3 6 3 2 3 4 3 5 3 5 6 3 5 4 2 1 4 6 5 5 5 
4 4 3 5 3 5 6 1 5 2 2 3 1 5 5 2 6 1 4 1 3 3 3 1 3 6 6 2 2 1 4 3 5 3 5 1 5 1 6 3 
2 5 6 4 6 5 2 6 1 4 4 2 4 5 4 1 5 6 4 4 2 1 5 4 4 6 4 3 5 5 6 5 4 2 3 2 3 3 3 4 
2 1 4 4 2 5 6 6 3 5 2 4 6 5 3 4 2 2 6 5 2 5 5 2 2 1 4 1 2 3 6 3 5 2 3 4 5 5 3 5 

uniform_real_distribution

auto seed = random_device()();
ranlux48 gen(seed);
uniform_real_distribution<> dist(18.0, 25.0);
for (int y=0; y<5; y++) {
    for (int x=0; x<10; x++)
        cout << fixed << setprecision(3) << dist(gen) << ' ';
    cout << '\n';
}
22.020 19.373 18.102 23.924 21.933 22.331 24.650 18.349 20.854 20.074 
23.595 20.929 18.811 22.169 21.138 18.856 23.231 21.855 18.557 19.786 
19.068 20.307 24.300 20.144 24.569 19.815 18.610 23.748 18.821 20.384 
23.280 21.044 22.675 21.824 18.097 18.248 24.960 23.095 20.926 23.889 
20.986 18.012 19.657 19.398 20.712 24.570 22.401 22.615 24.806 24.527 
OMG—what’s that <> doing there?

uniform_real_distribution’s template argument defaults to double, because … real.

Boolean Values

Yield true 42% of time:

random_device rd;
knuth_b gen(rd());
bernoulli_distribution dist(0.42);
constexpr int nrolls = 1'000'000;

int count=0;
for (int i=0; i<nrolls; i++)
    if (dist(gen))
        count++;

cout << "true: " << count*100.0/nrolls << "%\n";
true: 42.0273%

Histogram

random_device rd;
mt19937_64 gen(rd());
normal_distribution<> dist(21.5, 1.5);
map<int,int> tally;
for (int i=0; i<10000; i++)
    tally[dist(gen)]++;
for (auto p : tally)
    cout << p.first << ": " << string(p.second/100,'#') << '\n';
16: 
17: 
18: ###
19: ##########
20: #####################
21: ##########################
22: ####################
23: ###########
24: ###
25: 
26: 
27: 
28: 

Passwords

random_device rd;
auto seed = rd();
ranlux24 gen(seed);
uniform_int_distribution<char> dist('A','~');
for (int y=0; y<8; y++) {
    string pw;
    for (int x=0; x<32; x++)
        pw += dist(gen);
    cout << "Password: " << pw << '\n';
}
Password: sdAzow[fm^xxWWxVum`|^b~aQRevpAxG
Password: jneL~FYcGaYm\Xpvg|Z[_oAFrscvlxWD
Password: JRkfeMSGcJU]LZdYkxdbEc_Bn`Q\JC__
Password: HSuEMZomdxVVtAJJZFkimxZAKV^jqEgp
Password: FUlFz`oMYsea{G`|xFhjomHrxUzFUmFZ
Password: CiDXxBt{[ecEaFxyvhNNBkW\FQLLU~yi
Password: GK_QjASlclOOmPuVFNWaYDjskXD}zBV`
Password: Tk{sNlQReesmFsOtXK|}jSfOP\a~\x|f

Even though we’re using uniform_int_distribution, which has int right there in its name, it’s uniform_int_distribution<char>, so we get characters. Think of them as 8-bit integers that display differently.