
CS250: FOUNDATION OF COMPUTER SYSTEMS

[GRAPHICS PROCESSING UNITS GPUS]

Computer Science

Colorado State University

** Lecture slides created by: SHRIDEEP PALLICKARA

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Topics covered in this lecture

 GPUs wrap-up

HOW GPUS AND CPUS ARE DIFFERENT

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

How GPUs and CPUs differ [1/2]

 CPUs are very suitable for running

 Operating systems

 Application software

 On CPUs there are a vast variety of tasks a computer may be

performing at any given time

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

How GPUs and CPUs differ [2/2]

 CPUs are designed for running a small number of potentially quite

complex tasks

 GPUs are designed for running a large number of quite simple tasks

 The CPU design is aimed at systems that execute several discrete and

unconnected tasks

 The GPU design is aimed at problems that can be broken down into

thousands of tiny fragments and worked on individually

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

CPUs and GPUs support threads in very different

ways [1/2]

 The CPU has a small number of registers per core that must be used

to execute any given task

 To achieve this, they rapidly context switch between tasks

 On CPUs, context switching is expensive in terms of time

 The entire register set must be saved to RAM and the next one restored from RAM

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

CPUs and GPUs support threads in very different

ways [2/2]

 GPUs also use the same concept of context switching

 But instead of having a single set of registers, they have multiple

banks of registers

 A context switch simply involves setting a bank selector to switch in and out

the current set of registers

 Which is several orders of magnitude faster than having to save to RAM

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Both CPUs and GPUs must deal with stall conditions [1/2]

 Stalls are generally caused by I/O operations and memory fetches

 The CPU does this by context switching

 Providing there are enough tasks, and the runtime of a thread is not too
small, this works reasonably well

 If there are not enough processes to keep the CPU busy, it will idle

 If there are too many small tasks, each blocking after a short period?

 The CPU will spend most of its time context switching; very little time doing work

 CPU scheduling policies are often based on time slicing

 As the number of threads increases, the percentage of time spent context switching
becomes increasingly large and the efficiency starts to rapidly drop off

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Both CPUs and GPUs must deal with stall conditions [2/2]

 GPUs are designed to handle stall conditions and expect this to

happen with high frequency

 The GPU model is a data-parallel one and needs thousands of

threads to work efficiently

 GPUs uses this pool of available work to ensure it always has

something useful to work on

 Thus, when it hits a memory fetch or must wait on a computation result?

 The SPs simply switch to another instruction stream and return to the stalled

instruction stream sometime later

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

GPUs also provide something quite unique

 High-speed memory next to the SM, so-called shared memory

 Programmer can leave data in this shared memory

 Knowing that hardware will not evict it behind programmer’s back

 This shared memory is also the primary mechanism communication

between threads

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

The GPU’s task execution model differs in two key

ways

 Groups of N SPs execute in a lock-step basis running the same

program but on different data

 The second is that, because of the huge register file

 Switching threads has effectively zero overhead

 As a result, GPUs can support a very large number of threads

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Lock-step instruction dispatch in GPUs

SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

Instruction 0

Instruction 1

Instruction 2

 Each instruction in the instruction queue is dispatched to every SP

within an SM

COMING BACK TO THREADS IN GPUS

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Let’s look at a section of code and see what this

means from a programming perspective [1/2]

 void some_func(void) {

 int i;

 for (i=0;i<128;i++) {

 a[i] = b[i] ∗ c[i];

 }

}

 Stores the result of a multiplication of b and c value for a given index

in the result variable a for that same index

 Loop iterates 128 times (indexes 0 to 127)

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Let’s look at a section of code and see what this

means from a programming perspective [2/2]

 In CUDA you could translate this to 128 threads

 Each of which executes the line a[i] = b[i] ∗ c[i]

 Possible because there is no dependency between one iteration of the loop

and the next

 Transformation into a parallel program is rather easy

 In CUDA, we create a kernel function

 A function that executes on the GPU only and not on the CPU

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

The GPU kernel function looks identical to the loop

body, but with the loop structure removed

 Thus, you have the following:

 __global__ void

some_kernel_func(int ∗ const a, const int ∗ const b, const int ∗ const c)

{ a[i] = b[i] ∗ c[i]; }

 Notice

 You have lost the loop and the loop control variable, i

 You also have a __global__ prefix added to the C function that

 Tells the compiler to generate GPU code and not CPU code when compiling

 And to make that GPU code globally visible from within the CPU

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Threads are, in practice, grouped into sets of 32

 When the threads are waiting on something such as memory access,

they are all suspended

 The technical term for these groups of threads is a warp (32 threads)

and a half warp (16 threads)

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Threads are, in practice, grouped into sets of 32

 128 threads translate into four groups of 32 threads

 The first set all run together to extract the thread ID and then calculate

the address in the arrays and issue a memory fetch request

 So, the threads are suspended

 When all 32 threads in that block of 32 threads are suspended?

 The hardware switches to another warp

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Depicting this execution

Executing

Ready

Queue

Suspended

Memory

Request

Pending

Warp 0

(Threads

0-31)

Warp 1

(Threads

32-63)

Warp 2

(Threads

64-95)

Warp 3

(Threads

96-127)

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

When Warp-0 is suspended, Warp-1 becomes the

executing warp

Executing

Ready

Queue

Suspended

Memory

Request

Pending

Warp 0

(Threads

0-31)

Warp 1

(Threads

32-63)

Warp 2

(Threads

64-95)

Warp 3

(Threads

96-127)

Address

0-31

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Prior to issuing the memory fetch

 Fetches from consecutive threads are usually coalesced or grouped

together

 Reduces the overall latency (time to respond to the request), as there is an

overhead associated in the hardware with managing each request

 As a result of the coalescing:

 Memory fetch returns with the data for a whole group of threads

 Usually enough to enable an entire warp

 These threads are then placed in the ready state and become available for the

GPU to switch in the next time it hits a blocking operation

 Upon having executed all the warps (groups of 32 threads) the GPU becomes idle

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Now let’s look a little more at how exactly you

invoke a kernel

 CUDA defines an extension to the C language used to invoke a kernel

 To invoke a kernel, you use the following syntax:
kernel_function<<<num_blocks, num_threads>>>(param1, param2, …)

 The num_blocks parameter – there should be at least 1 block of threads

 The num_threads parameter is simply the number of threads you wish to

launch into the kernel

 For our simple example, this directly translates to the number of loop iterations

 However, be aware that the hardware limits you to 512 threads per block on the

early hardware and 1024 on the later hardware

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Now let’s look a little more at how exactly you

invoke a kernel

 Parameters can be passed via registers or constant memory

 Choice is based on the compilers

 If using registers: one register for every thread per parameter passed.

 Thus, for 128 threads with three parameters, we use 3 × 128 = 384

registers

 This may sound like a lot but remember that you have at least 8192

registers in each SM and potentially more on later hardware revisions.

 So, with 128 threads, you have a total of 64 registers (8192 registers ÷ 128

threads) available to you, if you run just one block of threads on an SM

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

However, running one block of 128 threads per SM

is a very bad idea

 Even if you can use 64 registers per thread

 As soon as you access memory, the SM would effectively idle

 Only in the very limited case of heavy arithmetic intensity utilizing

the 64 registers should you even consider this sort of approach

 In practice, multiple blocks are run on each SM to avoid any idle states

THREADS: GRIDS, BLOCKS, & WARPS

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Grids, blocks, warps

 At the heart of parallel programming is the idea of a thread

 A single flow of execution through the program in the same way a piece of

cotton flows through a garment

 Just as threads of cotton are woven into cloth, threads used together

make up a parallel program

 The CUDA programming model groups threads into special groups it calls

warps, blocks, and grids

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Warps

 Warps are the basic unit of execution on the GPU

 Each group of threads, or warps, is executed together

 Typically, only one fetch from memory for the current instruction and a

broadcast of that instruction to the entire set of SPs in the warp

 This is much more efficient than the CPU model, which fetches independent

execution streams to support task-level parallelism

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Grids

 A grid is simply a set of blocks where you have an X and a Y axis, in

effect a 2D mapping

 The final Y mapping gives you Y × X × T possibilities for a thread index

 The number of threads in a block should always be a multiple of the warp

size (currently 32)

 You can only schedule a full warp on the hardware, if you don’t do this, then the

remaining part of the warp goes unused

 To avoid poor memory coalescing, you should always try to arrange the

memory and thread usage so they map

 Failure to do so will result in something in the order of a 5X drop in performance

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

Grids

 If you were to look at a typical HD image, you have a 1920 × 1080

resolution

 We avoid tiny blocks, as they don’t make full use of the hardware;

we’ll pick 192 threads per block

 Typically, this is the minimum number of threads you should think about using

 This gives you exactly 10 blocks across each row of the image

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

HD Image and Block allocations to rows [1/2]

Block 0 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9

Block 10 Block 11 Block 12 Block 13 Block 14 Block 15 Block 16 Block 17 Block 18 Block 19

Block 20 Block 21 Block 22 Block 23 Block 24 Block 25 Block 26 Block 27 Block 28 Block 29

Block

10790

Block

10791

Block

10792

Block

10793

Block

10794

Block

10795

Block

10796

Block

10797

Block

10798

Block

10799

0 192 384 576 768 960 1152 1344 1536 1728 1920

Row 0

Row 1

Row 2

Row …

Row 1079

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

HD Image and Block allocations to rows [2/2]

 Along the top on the X axis, you have the thread index

 The row index forms the Y axis; the row height is exactly one pixel

 With1080 rows of 10 blocks, we have 1080 × 10 = 10,800 blocks

 Since each block has 192 threads, you are scheduling just over two million

threads, one for each pixel

 This particular layout is useful where you have

 One operation on a single pixel or data point, or

 Some operation on a number of data points in the same row

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

This is all very well, but what if your data is not row

based?

 As with arrays, you are not limited to a single dimension

 You can have a 2D thread block arrangement

CS250: Foundations of Computer Systems

Dept. Of Computer Science, Colorado State University

The contents of this slide-set are based on the

following references

 Shane Cook. CUDA Programming: A Developer's Guide to Parallel Computing with

GPUs (Applications of GPU Computing). ISBN-10/ISBN-13: 0124159338/978-

0124159334. 1st Edition. Morgan Kaufmann. [Chapters 3, 4, 5]

