
SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.1

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS250: FOUNDATIONS OF COMPUTER SYSTEMS [GPUS]

SHRIDEEP PALLICKARA

Computer Science
Colorado State University

The shadows lengthen
 winding through
representations binary, hexa, and octal

With numbers floating and signed
 mantissas and exponents
 working in tandem
representing things miniscule and gargantuan

Logic crunching through gates
 powered by moving electrons
synthesizing functions from truth tables
 in-silico, our one-man band, Nand

Data ensconced along for a ride
 over multiplexed, circuit-switched networks
riding ether (radio), fibers, and copper

Using sockets, routers, and protocol stacks
fragmented en route to destinations
coalesced finally reliably and in order

Trees that balance
 on their leaves
powering indexes signposts on steroids
 without accesses mired in the I/O quicksand

of CPUs, GPUs, and their love for speed
 low power and high throughputs
 crunching through tasks and data

Here’s to your journey
 through computing systems
In silico, abstractions, and software
 the road to everywhere

A retrospective, as the sun sets on the semester …

1

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.2

Frequently asked questions from the previous class
survey

¨ Is GPU programming more complex because little is implicit?

¨ Do patents in GPU design also impact marketshare?

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.2

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.3

Topics covered in this lecture

¨ GPUs
¤ Data and task based parallelism
¤ Flynn’s taxonomy
¤ CPU-GPU differences

¨ CSx55
¨ Final Exam

3

COMPUTER SCIENCE DEPARTMENT

DATA BASED PARALLELISM

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.3

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.5

Computational capabilities have grown
exponentially over the past couple of decades

¨ What has not kept pace with this evolution of compute power is the
access time for data

¨ Data-based parallelism looks first to the data and how it needs to be
transformed
¤ Not so much the tasks that need to be performed

¨ Task-based parallelism tends to be a coarse grained approach

5

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.6

Contrasting task and data-based parallelism

¨ Example:
¤ Performing four different transformations on four separate, unrelated, and

similarly sized arrays

¨ We will contrast approaches to this using task and data-based
parallelism

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.4

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.7

Task-based parallelism

¨ Assign one array to each of the CPU cores (or SMs in the GPU)
¤ On the CPU side we could create four threads or processes to achieve this
¤ On GPUs, we would create four separate kernels, one to process each array

and run it concurrently

¨ The parallel decomposition of the problem is driven by thinking about
the tasks or transformations, not the data

7

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.8

Data-based parallelism

¨ A data-based decomposition would instead split the first array into
four blocks
¤ Assign one CPU core or one GPU SM to each section of the array

¨ Once completed, the remaining three arrays would be processed in a
similar way

¨ The parallel decomposition here is driven by thinking about the data
first and the transformations second

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.5

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

FLYNN’S TAXONOMY

What’s in a name? That which we call a rose
By any other name would smell as sweet.
 —Juliet
 Romeo and Juliet (II, ii, 1-2)
 (Shakespeare)

9

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.10

Flynn’s taxonomy is a classification of different
computer architectures

¨ SISD : single instruction, single data

¨ MIMD : multiple instructions, multiple data

¨ SIMD : single instruction, multiple data

¨ MISD : multiple instructions, single data

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.6

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.11

The standard serial programming we are familiar
with follows the SISD model

¨ There is a single instruction stream working on a single data item at
any one point in time

¨ This equates to a single-core CPU able to perform one task at a time

¨ Of course, it’s quite possible to provide the illusion of being able to
perform more than a single task
¤ By simply switching between tasks very quickly, so-called time-slicing

11

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.12

MIMD systems are what we see today in dual- or
quad-core desktop machines

¨ Typical multi-core desktops have a worker pool of threads/processes
that the OS will allocate to one of N CPU cores

¨ Each thread/process has an independent stream of instructions
¤ The hardware contains all the control logic for decoding many separate

instruction streams concurrently

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.7

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.13

SIMD systems try to simplify the approach taken in
MIMD systems

¨ They accomplish this with the data parallelism model

¨ SIMD systems follow a single instruction stream at any one point in
time.
¤ Require a single set of logic inside the device to decode and execute the

instruction stream, rather than multiple-instruction decode paths

¨ By removing this silicon real estate from the device?
¤ Can be smaller, cheaper, consume less power, and run at higher clock rates

than their MIMD cousins

13

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.14

Multiple instruction, single data (MISD)

¨ Uncommon architecture that is generally used for fault tolerance
¨ A type of parallel computing architecture where many functional units

perform different operations on the same data
¤ E.g.: Heterogeneous systems operating on the same data stream and needing to

agree on the result
n Space shuttle flight control computer

¤ Task replication may be considered as MISD as well
n Executing the same instructions redundantly in order to detect and mask errors

¨ Applications for MISD are much less common than MIMD and SIMD
¤ MIMD and SIMD are often more appropriate for common data parallel techniques

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.8

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

HOW GPUS AND CPUS ARE DIFFERENT

15

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.16

How GPUs and CPUs differ [1/2]

¨ CPUs are very suitable for running
¤ Operating systems
¤ Application software

¨ On CPUs there are a vast variety of tasks a computer may be
performing at any given time

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.9

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.17

How GPUs and CPUs differ [2/2]

¨ CPUs are designed for running a small number of potentially quite
complex tasks
¤ GPUs are designed for running a large number of quite simple tasks

¨ The CPU design is aimed at systems that execute several discrete and
unconnected tasks
¤ The GPU design is aimed at problems that can be broken down into

thousands of tiny fragments and worked on individually

17

Threads

How GPUs and CPUs differ

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.10

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.19

CPUs and GPUs support threads in very different
ways [1/2]

¨ The CPU has a small number of registers per core that must be used
to execute any given task
¤ To achieve this, they rapidly context switch between tasks
¤ On CPUs, context switching is expensive in terms of time

n The entire register set must be saved to RAM and the next one restored from RAM

19

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.20

CPUs and GPUs support threads in very different
ways [2/2]

¨ GPUs also use the same concept of context switching

¨ But instead of having a single set of registers, they have multiple
banks of registers
¤ A context switch simply involves setting a bank selector to switch in and out

the current set of registers
n Which is several orders of magnitude faster than having to save to RAM

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.11

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

STALL CONDITIONS

How GPUs and CPUs differ

21

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.22

Both CPUs and GPUs must deal with stall conditions [1/2]

¨ Stalls are generally caused by I/O operations and memory fetches

¨ The CPU does this by context switching
¤ Provided that there are enough tasks, and the runtime of a thread is not too

small, this works reasonably well
¤ If there are not enough processes to keep the CPU busy, it will idle
¤ If there are too many small tasks, each blocking after a short period?

n The CPU will spend most of its time context switching; very little time doing work
n CPU scheduling policies are often based on time slicing
n As the number of threads increases, the percentage of time spent context switching

becomes increasingly large and the efficiency starts to rapidly drop off

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.12

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.23

Both CPUs and GPUs must deal with stall conditions [2/2]

¨ GPUs are designed to handle stall conditions and expect this to
happen with high frequency

¨ The GPU model is a data-parallel one and needs thousands of
threads to work efficiently

¨ GPUs uses this pool of available work to ensure it always has
something useful to work on
¤ Thus, when it hits a memory fetch or must wait on a computation result?

n The SPs simply switch to another instruction stream and return to the stalled
instruction stream sometime later

23

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.24

GPUs also provide something quite unique

¨ High-speed memory next to the SM, so-called shared memory

¨ Programmer can leave data in this shared memory
¤ Knowing that hardware will not evict it behind programmer’s back

¨ This shared memory is also the primary mechanism communication
between threads

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.13

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.25

The GPU’s task execution model differs in two key
ways

¨ Groups of N SPs execute in a lock-step basis running the same
program but on different data

¨ The second is that, because of the huge register file
¤ Switching threads has effectively zero overhead
¤ As a result, GPUs can support a very large number of threads

25

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.26

Lock-step instruction dispatch in GPUs

SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

Instruction 0

Instruction 1

Instruction 2

¨ Each instruction in the instruction queue is dispatched to every SP
within an SM

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.14

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

A TYPICAL PC ARCHITECTURE

27

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.28

Typical PC architecture

Northbridge

Southbridge

FSB FSB

DRAM Bank 0

DRAM Bank 1

DRAM Bank 2

DRAM Bank 3

DRAM Memory (2GHz, 16 GB, 30GB/s)

SATA (300 MB/sec)Storage
Ethernet

FS
B

Core 1 Core 2

Core 3 Core 4

PCI-E Bus (5GB/sec)

GPU 0 GPU 1 GPU 2 GPU 3 GPU 4 GPU 5 GPU 6 GPU 7

FS
B

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.15

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.29

The GPU hardware

¨ The GPU hardware consists of a number of key blocks:
¤ Memory (global, constant, shared)
¤ Streaming multiprocessors (SMs)
¤ Streaming processors (SPs)

29

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.30

GPUs and SMs

¨ A GPU device consists of one or more SMs

¨ Add more SMs to the device and you make the GPU able to
¤ Process more tasks at the same time, or
¤ Process the same task quicker, if you have enough parallelism in the task

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.16

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.31

Overview of a GPUs

PCI-E Bus (5GB/sec)

Constant memory bus
Global Memory Bus

Global Memory MMU 120 GB/S 256K to 4 GB
GPU #0

Bus

SP0 SP1 SP2 SP3 SP4 SP5 SP6 SP7

Shared Memory (16 x 1K)

SM0

Constant Shared
Memory

SM
1

SM
2

SM
3

GPU
#1

GPU
#2

GPU
#3

31

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.32

Taking a closer look at the SMs

¨ There are multiple SPs in each SM
¤ Our diagram showed 8
¤ In Fermi this grows to 32–48 SPs and in Kepler to 192

¨ Each hardware revision increases both the number of SMs and the
number of SPs (in each SM)

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.17

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.33

SMs and memory [1/3]

¨ Each SM has access to something called a register file
¤ A chunk of memory that runs at the same speed as the SP units, so there is

effectively zero wait time on this memory
¤ Used for storing the registers in use within the threads running on an SP

¨ There is also a shared memory block accessible only to the individual
SM; this can be used as a program-managed cache
¤ Unlike a CPU cache, hardware does not evict data from the cache behind

your back
n Entirely under programmer control

33

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.34

SMs and memory [2/3]

¨ Each SM has a separate bus into the texture memory, constant
memory, and global memory spaces

¨ Texture memory is a special view onto the global memory
¤ Useful for data needing interpolation; for e.g., with 2D/3D lookup tables
¤ Special feature of hardware-based interpolation

¨ Constant memory is used for read-only data
¤ Like texture memory, constant memory is simply a view into the main global

memory

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.18

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.35

SMs and memory [3/3]

¨ Global memory is supplied via GDDR (Graphic Double Data Rate) on
the graphics card
¤ A high-performance version of DDR (Double Data Rate) memory

¨ Memory bus width can be up to 512 bits wide, giving a bandwidth of
5 to 10 times more than found on CPUs
¤ Up to 190 GB/s with the Fermi hardware

35

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.36

Single core CPUs and parallelism

¨ Most programs written in the past few decades, with the exception of
perhaps the past 15 years or so, were single-thread programs
¤ The primary hardware on which they would execute was a single-core CPU

¨ Sure, you had clusters and supercomputers that sought to exploit a
high level of parallelism
¤ Duplicating the hardware and having thousands of commodity servers

instead of a handful of massively powerful machines

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L29.19

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L29.37

The contents of this slide-set are based on the
following references
¨ Shane Cook. CUDA Programming: A Developer's Guide to Parallel Computing with

GPUs (Applications of GPU Computing). ISBN-10/ISBN-13: 0124159338/978-
0124159334. 1st Edition. Morgan Kaufmann. [Chapters 3, 4, 5]

37

