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Frequently asked questions from the previous class 
survey

¨ How is range scan different from BST or B-Tree searchers?

¨ Are B-Trees partially resident in memory?
¨ Pointers for internal nodes?
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Topics covered in this lecture

¨ GPUs
¤ History
¤ Contrasting with CPUs
¤ Differences in caching schemes
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GPUS

But I've read this script and the costume fits, so I'll play my part.
Cleopatra, The Lumineers. 2016.
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The early days of GPU 

¨ Graphics processing units (GPUs) are present in most PCs

¨ GPUs provide several basic operations to the CPU, such as rendering 
an image in memory and then displaying that image onto the screen

¨ A GPU will typically process a complex set of polygons (a map of the 
scene) to be rendered
¤ Applies textures to the polygons 
¤ Performs shading and lighting calculations
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The path to GPGPU programming

¨ One of the important steps was the development of programmable 
shaders
¤ Effectively little programs that the GPU ran to calculate different effects
¤ Rendering was no longer fixed in the GPU; through downloadable shaders, 

it could be manipulated

¨ This was the first evolution of general-purpose graphical processor unit 
(GPGPU) programming
¤ The design had taken its first steps in moving away from fixed function units
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CPU
GPU

When I look into your eyes
I can see a love restrained
But darlin’ when I hold you
Don't you know I feel the same?

Nothin’ lasts forever
And we both know hearts can change
And it’s hard to hold a candle
In the cold November rain

November Rain, Guns N’ Roses
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GPUs (and NVIDIA) eating the CPUs lunch

¨ As of 2024, NVIDIA controls about 95% of 
the market for specialist AI chips
¤ Also accounts for 80% of the gaming GPUs

¨ GPUs have found wider use beyond gaming 
and AI
¤ Cryptocurrency and self driving cars

¨ Two other strengths that NVIDIA has
¤ CUDA
¤ High-performance networking (via purchase of 

Mellanox for $7bn in 2019)
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Looking at CPU & GPU servers in the computer
science department
¨ 2 CPU server (AMD EPYC 74F3)

¤ Number of cores/CPU: 24
¤ Clock speed: 3.2 GHz, Turbo: 4Ghz
¤ Size of the RAM: 1TB
¤ Approximate cost: $6,000

¨ GPU Server with 4 GPUs (NVIDIA A100); specs per GPU listed below
¤ Number of CUDA cores (or streaming processors): 6912
¤ Clock speed: 1.410 GHz (boost)
¤ Size of RAM (GPU memory): 80GB
¤ Approximate cost: $56,000
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CPUs vs GPUs

¨ Traditional CPUs are aimed at serial code execution and are 
extremely good at it
¤ They contain special hardware such as branch prediction units, multiple 

caches, etc., all of which target serial code execution

¨ GPUs are not designed for this serial execution flow
¤ Only achieve their peak performance when fully utilized in a parallel 

manner
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Effect of large cache sizes in the CPU

¨ As cache sizes grow, so does the physical size of the silicon used to 
make the processors

¨ The larger the chip, the more expensive it is to manufacture 
¤ And the higher the likelihood that it will contain an error and be discarded 

during the manufacturing process

¨ Sometimes these faulty devices are sold cheaply as either triple- or 
dual-core devices, with the faulty cores disabled

¨ However, the effect of larger, progressively more inefficient caches 
ultimately results in higher costs to the end user
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GPUs working in tandem with the CPU

¨ A GPU card, currently, must operate in conjunction with a CPU-based 
host

¨ The GPU cards can broadly be considered as an accelerator or a 
coprocessor
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2007 was the year that GPU programming went 
mainstream

¨ NVIDIA brought GPUs into the mainstream by adding an easier-to-use 
programming interface
¤ CUDA, or Compute Unified Device Architecture

¨ Opened up the possibility to program GPUs
¤ Without having to learn complex shader languages
¤ Without thinking only in terms of graphics primitives
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CUDA in brief                                         [1/2]

¨ CUDA is an extension to the C language that allows GPU code to be 
written in regular C

¨ The code is either targeted for 
¤ The host processor (the CPU) or 
¤ At the device processor (the GPU)
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CUDA in brief                                         [2/2]

¨ The host processor spawns multithread tasks (or kernels as they are 
known in CUDA) onto the GPU device
¤ CUDA kernel is a function that gets executed on the GPU 

¨ The GPU has its own internal scheduler that will then allocate the 
kernels to whatever GPU hardware is present
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GPUS AND DEEP LEARNING
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GPUs and Deep learning

¨ From a computational perspective, a major breakthrough for deep learning 
occurred in the late 2000s with the adoption of graphical processing units 
(GPUs) by the deep learning community to speed up training

¨ A neural network can be understood as a sequence of matrix multiplications
that are interspersed with the application of nonlinear activation functions
¤ GPUs are optimized for very fast matrix multiplications

¨ Consequently, GPUs are ideal hardware to speed up neural network training, 
and their use has made a significant contribution to the development of the 
field
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Some history

¨ In 2004, Oh and Jung reported a twentyfold performance increase 
using a GPU implementation of a neural network

¨ The following year two further papers were published that 
demonstrated the potential of GPUs to speed up the training of neural 
networks: 
¤ Steinkraus et al. (2005) used GPUs to train a two-layer neural network
¤ Chellapilla et al. (2006) used GPUs to train a CNN (convolutional neural 

network)

18



SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.10

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.19

A note about these early efforts

¨ Circa 2004-2006, there were significant programming challenges to 
using GPUs for training networks
¤ The training algorithm had to be implemented as a sequence of graphics 

operations
¤ So, the initial adoption of GPUs by neural network researchers was 

relatively slow
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These programming challenges were significantly 
reduced in 2007 with the release of CUDA

¨ CUDA was specifically designed to facilitate the use of GPUs for 
general computing tasks

¨ In the years following the release of CUDA, the use of GPUs to speed 
up neural network training became standard
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A very, very brief history of what powered deep 
learning

¨ Improved weight initialization methods 

¨ New activation functions 
¨ The speedup in computer power 

¨ The massive increase in dataset sizes
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GETTING BACK TO GPUS
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The GPU hardware consists of a number of key 
blocks                                                           [1/2]

¨ Streaming multiprocessors (SMs) 

¨ Streaming processors (SPs) 
¨ Memory (global, constant, shared)
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The GPU hardware consists of a number of key 
blocks                                                           [1/2]

¨ Each GPU device contains a set of SMs
¤ Each of which contain a set of SPs or CUDA cores

¨ The SPs execute work as parallel sets of up to 32 units

¨ CPUs need a lot of the complex circuitry to achieve high-speed serial 
execution through instruction-level parallelism (ILP)
¤ GPUs eliminate this!
¤ GPUs replace ILP with a programmer-specified explicit parallelism model

n Allowing more compute capacity to be squeezed onto the same area of silicon
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Overall throughput of GPUs is largely determined 
by …

¨ The number of SPs present

¨ The bandwidth to global memory

¨ How well the programmer makes use of the parallel architecture they 
are working with
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CUDA and compatibility

¨ The CUDA compilation model applies the same principle as used in 
Java — runtime compilation of a virtual instruction set

¨ Allows modern GPUs to execute code from even the oldest generation 
GPUs

¨ However, executions benefit from the original programmer reworking 
the program for the features of the newer GPUs
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To use a military analogy for how CUDA splits 
problems

¨ We have an army (a grid) of soldiers (threads)

¨ The army is split into a number of units (blocks), each commanded by 
a lieutenant

¨ The unit is split into squads of 32 soldiers (a warp), each commanded 
by a sergeant
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Coordination across threads

¨ To perform some action, central command (the kernel/host program) must 
provide some action plus some data

¨ Each soldier (thread) works on their individual part of the problem
¨ Threads may from time-to-time swap data with one another under the 

coordination of either the sergeant (the warp) or the lieutenant (the block) 
¨ However, any coordination with other units (blocks) must be performed by 

central command (the kernel/host program)
¨ When you think about how a CUDA program will implement concurrency

¤ Think of orchestrating thousands of threads in this very hierarchical manner 
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CUDA splits problems into grids of blocks, each 
containing multiple threads                             [1/2]

¨ The blocks may run in any order

¨ Only a subset of the blocks will ever execute at any one point in time 

¨ A block must execute from start to completion and may be run on one 
of the N SMs (streaming multiprocessors)
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CUDA splits problems into grids of blocks, each 
containing multiple threads                             [2/2]

¨ Blocks are allocated from the grid of blocks to any SM that has free 
slots

¨ Initially this is done on a round-robin basis, so each SM gets an equal 
distribution of blocks

¨ For most kernels, the number of blocks needs to be in the order of 
eight or more times the number of physical SMs on the GPU
¤ Recall that CUDA kernel is a function that gets executed on the GPU
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GPU-based view of threads
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How computing has evolved

¨ Over the last decade or so, computing has moved 
¤ From one limited by computational throughput of the processor
¤ To one where moving the data is the primary limiting factor

¨ When designing a processor in terms of processor real estate, 
compute units (or ALUs—algorithmic logic units) are cheap
¤ They run at high speed, and consume little power and physical die space 
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However, ALUs are of little use without operands

¨ Considerable amounts of power and time are consumed in moving the 
operands to and from these functional units

¨ In modern computer designs this is addressed via the use of multilevel 
caches 
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Caches and locality

¨ Caches work on the principle of either spatial (close in the address 
space) or temporal (close in time) locality

¨ Thus, data that has been accessed before, will likely be accessed again 
(temporal locality)

¨ Data that is close to the last accessed data will likely be accessed in the 
future (spatial locality)

¨ Caches work well where the task is repeated many times
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36



SLIDES CREATED BY: SHRIDEEP PALLICKARA L28.19

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

GPUSCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L28.37

Caches: A plumbing analogy

¨ Consider a plumber with a toolbox (a cache) that can hold four tools

¨ A number of the jobs being attended to are similar
¤ So, the same four tools are repeatedly used (a cache hit)

¨ However, a significant number of jobs require additional tools; if the 
plumber does not know in advance what the job will entail?
¤ Arrives and starts work
¤ Partway through the job, the plumber needs an additional tool 
¤ Since it’s not in the toolbox (L1 cache), plumber retrieves the item from the 

van (L2 cache)
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Some jobs are tougher for the plumber

¨ Occasionally the plumber needs a special tool 
¤ Must leave the job, drive to the local hardware store (global memory), fetch 

the needed item, and return

¨ Plumber does not know how long (the latency) this operation will take 
¤ There may be congestion on the freeway and/or queues at the hardware 

store (other processes competing for main memory access)
¤ Clearly, this is not a very efficient use of the plumber’s time
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While fetching new tools the plumber is not working 
on the problem at hand

¨ Each time a different tool or part is needed?
¤ It needs to be fetched by the plumber from either the van or the hardware 

store

¨ While this might seem bad, fetching data from an HDD or an SSD is 
even worse, akin to ordering an item at the hardware store
¤ In comparative form, data arrives by snail mail
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Typical latencies to global memory are in the order 
of hundreds of clocks

¨ Increasingly, the answer to this problem from traditional CPU processor 
design has been to increase the size of the cache
¤ In effect, arrive with a bigger van so fewer trips to the hardware store are 

necessary

¨ There is, however, an increasing cost to this approach
¤ Both in terms of capital outlay for a larger van and 
¤ The time it takes to search a bigger van for the tool/part
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The approach taken by most CPU designs today?

¨ Arrive with a van (L2 cache) and a truck (L3 cache)

¨ In the extreme case of the server processors?
¤ A huge 18-wheeler is brought in to try to ensure that the plumber is kept 

busy for just that little bit longer

¨ All of this work is necessary because of one fundamental reason
¤ The CPUs are designed to run software where the programmer does not 

have to care about locality
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THERE IS NO DENYING THE
ISSUE OF LOCALITY

The order that our mind imagines is like a net, or like a 
ladder, built to attain something.  But afterward you must 
throw the ladder away, because you discover that, even if it 
was useful, it was meaningless.

Umberto Eco, The Name of the Rose
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Locality 

¨ Locality is an issue, regardless of whether the CPU processor tries to 
hide it from the programmer or not

¨ The denial that this is an issue on CPUs is what leads to the huge 
amount of hardware necessary to deal with memory latency
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GPU design takes a different approach    [1/2]

¨ Places the GPU programmer in charge of dealing with locality 

¨ Instead of an 18-wheeler truck, gives programmer a number of small 
vans and a very large number of plumbers

¨ The programmer must deal with locality
¤ Programmer needs to think in advance about what tools/parts (memory 

locations/data structures) will be needed for a given job
¤ These then need to be collected in a single trip to the hardware store 

(global memory) 
n And placed in the correct van (on chip memory) for a given job at the outset
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GPU design takes a different approach    [2/2]

¨ Given that this data has been collected, as much work as possible
needs to be performed with the data 
¤ To avoid having to fetch and return it only to fetch it again later for another 

purpose

¨ Thus, the continual cycle of work-stall-fetch from global memory is 
broken
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GPU design: Analogy

¨ Workers at a production line

¨ Workers are supplied with baskets of parts to process
¤ This simple process of planning ahead allows the programmer to schedule 

memory loads into the on-chip memory before they are needed

¨ What if each worker individually fetches 
widgets one at a time from the store 
manager’s desk?
¤ Terribly inefficient!

Source: Wikipedia
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But this could be done with a CPU cache as well, 
couldn’t it?   Yes, and no ...                              

¨ You can use special cache for instructions that allow prefilling of the 
cache with data you expect the program to use later

¨ The downside of the cache approach over the GPU shared memory 
approach is eviction and dirty data
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Data in a cache is said to be dirty if it has been 
written by the program

¨ To free up the space in the cache for new useful data?
¤ The dirty data must be written back to global memory before the cache 

space can be used again
¤ This means instead of one trip to global memory of an unknown latency?

n We now have two — one to write the old data and one to get the new data
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Let’s contrast this with the explicit local memory 
model such as the GPU’s shared memory

¨ The big advantage of the programmer-controlled on-chip memory is 
that the programmer is in control of when the writes happen

¨ If you are performing some local transformation of the data, there 
may be no need to write the intermediate transformation back to 
global memory

¨ With a cache, the cache controller does not know what needs to be 
written and what can be discarded
¤ Thus, it writes everything, potentially creating lots of useless memory traffic 

that may, in turn, cause unnecessary congestion on the memory interface
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Cache coherency

¨ One important distinction between the caches found in GPUs and CPUs is 
cache coherency

¨ In a cache-coherent system, a write to a memory location needs to be 
communicated to all levels of the cache in all cores
¤ Thus, all CPU processor cores see the same view of memory at any point in time
¤ This is one of the key factors that limits the number of cores in a processor

n Communication becomes increasingly more expensive in terms of time as the processor core 
count increases

¤ The worst case in a cache-coherent system? 
n Each core writes adjacent memory locations as each write forces a global update to every 

core’s cache
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Non cache-coherent systems

¨ A non cache-coherent system by comparison does not automatically 
update the other core’s caches

¨ Relies on the programmer to write the output of each processor core 
to separate areas/addresses

¨ Supports the view of a program where a single core is responsible for 
a single or small set of outputs

¨ CPUs follow the cache-coherent approach whereas the GPU does not 
¤ Allows GPUs to scale to a far larger number of cores (SMs) per device
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The contents of this slide-set are based on the 
following references
¨ Shane Cook. CUDA Programming: A Developer's Guide to Parallel Computing with 

GPUs (Applications of GPU Computing). ISBN-10/ISBN-13: 0124159338/978-
0124159334. 1st Edition. Morgan Kaufmann.  [Chapters 2,3]

¨ Kelleher, John D.. Deep Learning (MIT Press Essential Knowledge series). The MIT 
Press. [Chapter 4]
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