CS 250: FOUNDATIONS OF COMPUTER SYSTEMS [NETWORKING]

Private Addresses

Need an address for this and that?

Do more with less Keep it private and use a NAT

For you don't need permissions Nor worry about collisions SHRIDEEP PALLICKARA
Computer Science
Colorado State University

COMPUTER SCIENCE DEPARTMENT

1

Topics covered in this lecture

- □ Private IP Addresses
- DNS
- □ OSI Network architecture

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.2

COMPUTER SCIENCE DEPARTMENT

3

Issues with having a limited number of IPv4 addresses

- □ The number of available IP addresses is **limited**
 - Most internet service providers (ISPs) only assign a single IP address to a customer
- ☐ This IP address is assigned to the device that's directly attached to the ISP's network, usually a router
- □ However, many customers have multiple devices on their home network

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.4

Δ

We will see how multiple devices can share a single public IP address

- □ Private IP addresses
- Network Address Translation
- □ Note:
 - Most routers sold to consumers for home use are NAT routers, often with built-in wireless access point capabilities as well

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.5

5

Private IP addresses

- □ Certain ranges of IP addresses are considered **private IP addresses**
 - Addresses intended to be used on private networks; e.g., homes or offices
 - □ The devices aren't directly connected to the internet
- Any address that matches the pattern of 10.x.x.x, 172.16.x.x, or 192.168.x.x is a private IP address
 - Anyone can use these ranges of IP addresses without asking permission
- □ The catch is that private IP addresses are **nonroutable**
 - Can't be used on the public internet
- □ For IPv6? Addresses starting with fc

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.6

Who assigns these addresses

- Private IP addresses are intended to be used simultaneously on multiple private networks
 - Unlike public IP addresses that must be unique
- □ It doesn't matter if multiple networks use the same addresses
 - The addresses won't ever be seen outside of the private network anyway

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.7

7

Who assigns these addresses

- □ A DHCP server on a home network can assign these addresses
 - Without worrying about whether any other network is using the same addresses
- Private IP addresses solve the problem of an ISP only providing a single public IP address to a home or business
- □ But how are private IP addresses useful if they aren't routable on the internet?

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.8

Q

Network Address Translation (NAT)

- □ NAT allows devices on a private network (e.g., a home network) to all use the same public IP address on the internet
- As packets flow through a NAT router, the router modifies the IP address information in those packets

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.9

9

Comings and goings

- When a packet originating from the private home network arrives at the NAT router?
 - The NAT modifies the source IP address field to match the public IP address
- □ When a response comes back to the router?
 - The NAT sets the destination IP address to the private address of the host that originated the request

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.10

The result of these IP modifications?

- All traffic from the home appears to originate from the same public IP address
 - Even if there are actually multiple devices on the private network

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.11

11

NAT also has the side benefit of security

- □ The devices on the private network aren't directly exposed to the public internet
 - A malicious user on the internet can't initiate a connection directly to a private device

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.12

Private IP addresses are valuable not only for home networks

- Businesses that don't want their computers exposed to the public internet use them as well
- □ Many corporate networks use a **proxy server** rather than a NAT router

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.13

13

Proxy servers

- A proxy server is similar to a NAT router in that it allows devices on a private network to access the internet
- □ But a proxy server differs in that it typically operates at the application layer rather than the internet layer
- Proxies also usually provide additional features such as user authentication, traffic logging, and content filtering

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.14

15

- □ We've seen that hosts on the internet are identified by IP addresses
- □ However, most users of the internet rarely, if ever, directly deal with IP addresses
 - □ IP addresses work well for computers, not so much for humans
 - No one wants to remember sets of four numbers (six for IPv6) separated by periods
- □ DNS to the rescue!

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.16

Domain Name System (DNS)

- DNS is an internet service that maps names to IP addresses
- □ This allows us to refer to a host by a name like www.example.com rather than by its IP address
- A computer's full DNS name is known as a fully qualified domain name (FQDN)

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.17

17

Domain Name System (DNS)

- □ travel.example.com is an FQDN
 - The name is composed of
 - A short, local hostname (travel)
 - A domain suffix (example.com)
- □ The term hostname is often used interchangeably to mean either the computer's short name or the FQDN

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.18

Difference between domains and hosts on that domain

- □ A domain, like example.com, represents a grouping of network resources managed by an organization
- □ Both example.com and travel.example.com are domain names
 - The former represents a network domain
 - □ The latter represents a specific host on that domain

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.19

19

Resolving hostnames

- □ Software needs to be able to query DNS to convert hostnames to IP addresses
 - Resolving a hostname
- □ To enable this functionality, hosts are configured with a list of the IP addresses of DNS servers
- ☐ This list is usually provided by **DHCP** (Dynamic Host Configuration Protocol)
 - Typically, is composed of DNS servers maintained by the internet service provider
 - Or running on the local network

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.20

Connecting to a server

- When a client wants to connect to a server by name, it asks a DNS server for the IP address corresponding to that name
 - The server replies with the requested IP address, if it can
 - Once the client has the server's IP, it proceeds to communicate with the server using the IP address

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.21

21

There need not be a one-to-one mapping between IP addresses and names

- □ A name can map to multiple IP addresses
 - Here, different clients query DNS for a certain name, and they may all receive a different IP address as a response
- Useful for situations where the service load needs to be distributed across multiple servers
 - Can be done geographically
 - Clients in Europe, for e.g., get a different IP address than clients in US and Asia
 - Allowing clients in each region to connect to the IP address of a server that's physically close to them

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.22

Multiple names can map to the same IP address

- A query for different names may return a single IP address
- □ This is useful when a server hosts multiple instances of the same type of service, each identified by name
- □ Common in **web hosting**, where a single server hosts multiple websites, each identified by its DNS name

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.23

23

Each entry in DNS is known as a record

- ☐ There are various kinds of records
- □ The most basic is an **A record**, which simply maps a hostname to an IP address
- CNAME (canonical name) records map one hostname to another hostname
- □ MX (mail exchanger) records used for email services

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.24

Getting DNS to scale

- No single organization would want to undertake the task of managing the many, many DNS records that exist today
 - DNS is implemented in a way that allows for shared responsibility
 - A DNS name like www.example.com actually represents a hierarchy of records
- Different DNS servers are responsible for maintaining the records at different levels of the hierarchy

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.25

25

DNS Hierarchy

- □ At the top of this hierarchical tree is the **root domain**
- □ The root domain doesn't get a textual representation in a DNS name like www.example.com
 - But it's an essential part of the DNS hierarchy
- □ The root domain contains records for all the **top-level domains** (TLDs) like .com, .org, .edu, .net, and so forth
- □ There are 13 root name servers worldwide, each responsible for knowing the details of all the top-level domain servers

COLORADO STATE UNIVERSITY

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.27

27

Resolving a name

[1/2]

- □ Let's say you want to look up a record in a domain that ends with .com
- □ A root server can point you to a TLD server that knows about domains under .com
- □ A top-level DNS server is responsible for knowing about all the second-level domains under its hierarchy
 - A top-level DNS server for .com could point you to the second-level DNS server for example.com

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.28

Resolving a name

[2/2]

- □ The DNS servers for second-level domains maintain records for hosts and third-level domains that fall under second-level domains
 - This means that the DNS server(s) for example.com are responsible for maintaining the records for hosts like www.example.com and mail.example.com
- □ This pattern continues, allowing for nested domains
 - Once a domain is registered under a top-level domain, the owner of that domain can create as many records as needed under their domain

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.29

29

DNS and Caching

[1/2]

- □ When a computer needs to find the IP address for an FQDN, it sends a request to its configured DNS server
- □ If the server has recently looked up the requested record?
 - □ May have a copy of that record stored in its cache
 - Can immediately return the IP address to the client

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.30

DNS and Caching

[2/2]

- □ If the DNS server doesn't have the response in cache
 - □ It may query other DNS servers as needed to get the answer
 - Starting at the root
 - Working down the hierarchy of servers to find the record in question
- Once the server has the record, it can cache it so that it can immediately respond to future queries for that record
 - Eventually the cached record is removed
 - To ensure that the server always provides reasonably recent data

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.31

31

OSI NETWORK ARCHITECTURE

COMPUTER SCIENCE DEPARTMENT

OSI network architecture

- □ Model is a product of the Open Systems Interconnection (OSI) project
 - □ At the International Organization for Standardization (ISO)
- □ Partitions network functionality into **7 layers**
- Physical Layer
 - Handles transmission of raw bits
 - Standardizes electrical, mechanical, and signaling interfaces
 - 0 bit should be received as 0 not 1

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.33

33

OSI network architecture: Data link Layer

- □ Collects stream of bits into a frame
 - Puts special bit pattern at the start/end of each frame
 - □ Frames, not raw bits, are delivered to host
- □ Compute **checksum** for frame
 - Check for correctness and request retransmission
- □ Network adaptors & device drivers implement this

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.34

35

37

The contents of this slide-set are based on the following references

Matthew Justice. How Computers Really Work: A Hands-On Guide to the Inner Workings of the Machine. ISBN-10/ISBN-13: 1718500661/978-1718500662.
 No Starch Press. 2020. [Chapter 11]

Professor: SHRIDEEP PALLICKARA

COMPUTER SCIENCE DEPARTMENT

NETWORKING

L23.39