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Caching and Locality
Access a data item once
Likely, then, you are  to access it again
 Later in time (temporality)

Access a data item once
 The one close to it will likely be accessed next
 Spatial proximity

Caching’s secret sauce?  locality
 Spatial, temporal or 
 Some combination thereof
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Frequently asked questions from the previous class 
survey

¨ Can I run individual applications by forcing it to not use the cache? 
Can I disable the cache?

¨ How are these caches being populated with entries?
¨ How many things can happening concurrently if you have N cores?

¨ Why is mixing DDR generations such a problem?   Transfers, 
frequencies, power requirements, etc. 
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Topics covered in this lecture

¨ The memory hierarchy

¨ Enabling feature in caching

¨ Caching
¤ Direct mapped
¤ Associative 
¤ N-way associativity

¨ A real-world example
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Moving data between the registers and memory is 
strictly a program function

¨ The program loads data into registers and stores register data into 
memory using machine instructions like mov

¨ It is the programmer’s or compiler’s responsibility to keep heavily 
referenced data in the registers as long as possible
¤ The CPU will not automatically place data in general-purpose registers in 

order to achieve higher performance
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Program responsibility and obliviousness   [1/2]

¨ Programs explicitly control access to registers, main memory, and 
memory-hierarchy subsystems that are at the file storage level or lower

¨ Programs are largely unaware of the memory hierarchy between the 
register level and main memory
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Program responsibility and obliviousness   [2/2]

¨ In particular, cache accesses are transparent to the program
¤ Access to these levels of the memory hierarchy usually occurs without any 

intervention on a program’s part

¨ Programs simply access main memory, and the hardware and 
operating system take care of the rest
¤ Really?   Yes!!!
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Responsibility for data movements

¨ If a program always accesses main memory, it will run slowly
¤ Modern DRAM main-memory subsystems are much slower than the CPU

¨ Cache memory subsystems and the CPU’s cache controller move data 
between main memory and the L1, L2, and L3 caches 
¤ So that the CPU can quickly access oft-requested data

¨ Likewise, it is the virtual memory subsystem’s responsibility to move 
oft-requested data from hard disk to main memory
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Mechanics of transparent data accesses

¨ With few exceptions, most memory subsystem accesses take place 
transparently between 
¤ One level of the memory hierarchy and 
¤ the level immediately below or above it
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For example, the CPU rarely accesses main memory 
directly

¨ Instead, when the CPU requests data from memory, the L1 cache 
subsystem takes over

¨ If the requested data is in the cache
¤ Cache hit

¤ The L1 cache subsystem returns the data to the CPU, and that concludes the 
memory access 

¨ If the requested data is not in the cache?
¤ Cache miss!
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If the requested data isn’t present in the L1 cache  
…

¨ The L1 cache subsystem passes the request down to the L2 cache 
subsystem

¨ If the L2 cache subsystem has the data? 
¤ The L2 Cache returns this data to the L1 cache, which then returns the data 

to the CPU

¨ Requests for the same data in the near future will be fulfilled by the L1 
cache rather than the L2 cache
¤ Because the L1 cache now has a copy of the data 
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What if the L2 cache does not have it?

¨ After the L2 cache, the L3 cache kicks in

¨ If none of the L1, L2, or L3 cache subsystems have a copy of the data, 
the request goes to main memory
¤ If the data is found in main memory, the main-memory subsystem passes it to 

the L3 cache
n The L3 cache then passes it to the L2 cache, which then passes it to the L1 cache

n The L1 cache then passes it to the CPU

¨ Once again, the data is now in the L1 cache, so any requests for this 
data in the near future will be fulfilled by the L1 cache
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Relative performance of the memory system

¨ Registers are, unquestionably, the best place to store data you need to 
access quickly
¤ Accessing a register never requires any extra time, and 
¤ Most machine instructions that access data can access register data

¨ The difference in speed between the L1, L2, and L3 cache systems isn’t 
so dramatic unless the secondary or tertiary cache is not packaged 
together on the CPU
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There are several reasons why L2 cache accesses 
are slower than L1 accesses
¨ It takes the CPU time to determine that the data it’s seeking is not in 

the L1 cache
¤ By the time it does that, the memory access cycle is nearly complete, and 

there’s no time to access the data in the L2 cache

¨ The circuitry of the L2 cache may be slower than the circuitry of the 
L1 cache in order to make the L2 cache less expensive

¨ L2 caches are usually 16 to 64 times larger than L1 caches
¤ Larger memory subsystems tend to be slower than smaller ones
¤ All this amounts to additional wait states for accessing data in the L2 cache 
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A similar performance gulf separates the L2 and L3 
caches and L3 and main memory

¨ Main memory is typically one order of magnitude slower than the L3 
cache; L3 accesses are much slower than L2 access

¨ To speed up access to adjacent memory objects, the L3 cache reads 
data from main memory in cache lines

¨ Likewise, L2 cache reads cache lines from L3
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Up until this point

¨ We have treated the cache as a magical place that 
¤ Automatically stores data when we need it, perhaps fetching new data as 

the CPU requires it 

¨ But how exactly does the cache do this? 
¤ And what happens when it is full, and the CPU is requesting additional 

data that’s not there?
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Programs access only a small amount of data at a 
given time

¨ A cache that is sized accordingly will improve their performance

¨ Unfortunately, the data that programs want rarely sits in contiguous 
memory location
¤ It’s usually spread out all over the address space

19

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.20

Cache design considerations …

¨ Cache design must account for the fact that the cache must map data 
objects at widely varying addresses in memory

¨ Cache memory is not organized in a single group of bytes
¤ Instead, it’s usually organized in blocks of cache lines

¤ Each line containing some number of bytes 
n Typically, a small power of 2: like 16, 32, or 64
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Cache lines

¨ For example, an 8 KB cache line is often organized as a set of 512 
cache lines of 16 bytes each

… … 16-byte 
cache line

8 KB with 512 16-byte cache lines
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We can attach a different noncontiguous address to 
each of the cache lines

¨ Cache line 0 might correspond to addresses 0x10000 through 
0x1000F

¨ Cache line 1 might correspond to addresses 0x21400 through 
0x2140F 
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Generally, if a cache line is n bytes long

¨ It will hold n bytes from main memory that fall on an n-byte boundary

¨ In our example of 16-byte cache lines, a cache line holds blocks of 16 
bytes whose addresses fall on 16-byte boundaries in main memory 
¤ i.e., the least-significant 4 bits of the address of the first byte in the cache 

line are always 0

… … 16-byte 
cache line

8 KB with 512 16-byte cache lines
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Types of caches

¨ Direct mapped caches

¨ Fully associative caches
¨ N-way associative caches

25

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.26

A direct mapped cache is also known as a one-way 
associative cache

¨ In a direct-mapped cache, a particular block of main memory is 
always loaded into—mapped to—the exact same cache line

¨ This mapping is determined by a small number of bits in the data 
block’s memory address 
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Direct-mapped Cache

31 13 12 4 3 0

… 16-byte 
cache line

8 KB with 512 16-byte cache lines

9 bits (4 through 12) of the physical memory 
address provide an index to select one of 
the 512 cache lines within the cache (29=512)

bits 0 through 3 determine the 
particular byte within the 16-
byte cache line 
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Problems with a direct mapped cache

¨ Two different memory addresses located on 8KB boundaries cannot 
both appear simultaneously in the cache

¨ How many such addresses exist in our 32-bit system?
¤ 219 8KB blocks exist in our system
¤ 219   512 (29) blocks of 16-bytes (24) each

n 219. 29 . 24 = 232 (the size of the main memory in our example)
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The ideal world: A fully associative cache

¨ The cache controller can place a block of bytes in any one of the 
cache lines present in the cache memory

¨ While this is the most flexible cache system, the extra circuitry to 
achieve full associativity is expensive and, worse, can slow down the 
memory subsystem

¨ Most L1 and L2 caches are not fully associative for this reason
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Trade-off space

¨ A fully associative cache is too complex, too slow, and too expensive 
to implement

¨ But a direct-mapped cache is too inefficient
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A compromise: the n-way associative cache

¨ In an n-way set associative cache, the cache is broken up into sets of n 
cache lines

¨ The CPU determines the particular set to use based on 
¤ Some subset of the memory address bits, just as in the direct-mapping 

scheme, and …
¤ The cache controller uses a fully associative mapping algorithm to determine 

which one of the n cache lines within the set to use

31

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.32

For example, an 8KB two-way set associative cache 
subsystem with 16-byte cache lines                  [1/2]

¨ Organizes the cache into 256 cache-line sets with two cache lines 
each

¨ Eight bits from the memory address determine which one of these 256 
different sets will contain the data
¤ 28 = 256

¨ Once the cache-line set is determined, the cache controller maps the 
block of bytes to one of the two cache lines within the set
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For example, an 8KB two-way set associative cache 
subsystem with 16-byte cache lines                  [2/2]

¨ This means two different memory addresses located on 8KB 
boundaries (addresses having the same value in bits 4 through 11) can 
both appear simultaneously in the cache

¨ However, a conflict will occur if you attempt to access a third memory 
location at an address that is an even multiple of 8KB

33

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.34

An 8 KB two-way set associative cache subsystem 
with 16-byte cache lines

31 12 11 4 3 0

… 16-byte 
cache line

8 KB with 2-way set associative cache with 256 sets of 
two (16-byte) cache lines each 

The cache controller chooses one of two
different cache lines within the set 28=256

bits 0 through 3 determine the 
particular byte within the 16-
byte cache line 

A cache line set
comprising 
two cache lines

Eight bits (11 through 4) provide index to select
one of 256 sets 28=256 
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What if we have a 4-way associative cache

¨ A four-way set associative cache puts four associative cache lines in 
each cache-line set

¨ In our example, 8KB cache, a four-way set associative caching scheme 
would have 128 cache-line sets with four cache lines each

¨ This would allow the cache to maintain up to four different blocks of 
data without a conflict, each of which would map to the same cache 
line in a direct-mapped cache
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2-/4-way set associative vs direct mapped 

¨ A 2- or 4-way set associative cache is 
¤ Much better than a direct-mapped cache and 
¤ Considerably less complex than a fully associative cache
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Can we keep increasing the number of lines in each 
cache-line set?

¨ The more cache lines we have in each cache-line set, the closer we 
come to creating a fully associative cache
¤ With all the attendant problems of complexity and speed

¨ Most cache designs are direct-mapped, two-way set associative, or 
four-way set associative
¤ The various members of the 80x86 family make use of all three
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An analogy: You at a government office

¨ Some interactions can be completed using your IDs/cards (in your 
wallet), documents (in your backpack), and documents (at home)
¤ Items can be retrieved from the wallet in 2 seconds
¤ The bag needs to be searched, and it takes about 120 seconds to do so
¤ The trip home and back will take 36,000 seconds (or 10 hours)

¨ Average time to complete transaction if your wallet suffices 95% of 
the time but the backpack comes into play 5% of time?
¤ 0.95 * (wallet_time) + 0.05 * (backpack_time)
¤ 0.95 * 2 + 0.05 * 120 = 7.9 seconds
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An analogy: You at a government office

¨ Average time to complete transaction if your wallet suffices 95% of 
the time but the backpack comes into play 4% of time and you need 
to go home 1% of the time?
¤ 0.95 * (wallet_time) + 0.04 * (backpack_time) + 0.01 (home_trip)
¤ 0.95 * 2 + 0.04 * 120 + 0.01 * 36,000 = 505.9 seconds
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Let’s make it a little more real

¨ Cache access: 2 ns
¨ Main memory access: 50 ns
¨ Disk access: 8 milliseconds [8,000,000 ns]
¨ 97% cache and 3% main memory

¤ 0.97 * 2 + 0.03 * 50 = 3.4 ns

¨ 95% cache and 5% main memory
¤ 0.95 * 2 + 0.05 * 50 = 4.4 ns

¨ 95% cache, 4% main memory, and 1% disk
¤ 0.95 * 2 + 0.04 * 50 + 0.01 * 8,000,000 = 80,003.9 ns
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The contents of this slide-set are based on the 
following references
¨ Jonathan E. Steinhart. The Secret Life of Programs: Understand Computers -- Craft 

Better Code. ISBN-10/ ISBN-13 : 1593279701/ 978-1593279707. No Starch 
Press.  [Chapter 4]

¨ Randall Hyde. Write Great Code, Volume 1, 2nd Edition: Understanding the Machine 
2nd Edition. ASIN: B07VSC1K8Z. No Starch Press. 2020. [Chapter 11]

¨ Matthew Justice. How Computers Really Work: A Hands-On Guide to the Inner 
Workings of the Machine. ISBN-10/ISBN-13  :  1718500661/ 978-1718500662. 
No Starch Press. 2020. [Chapter 7]
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