
SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.1

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

CS250: FOUNDATIONS OF COMPUTER SYSTEMS

[MEMORY]

SHRIDEEP PALLICKARA

Computer Science
Colorado State University

Caching and Locality
Access a data item once
Likely, then, you are to access it again
 Later in time (temporality)

Access a data item once
 The one close to it will likely be accessed next
 Spatial proximity

Caching’s secret sauce? locality
 Spatial, temporal or
 Some combination thereof

1

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.2

Frequently asked questions from the previous class
survey

¨ Can I run individual applications by forcing it to not use the cache?
Can I disable the cache?

¨ How are these caches being populated with entries?
¨ How many things can happening concurrently if you have N cores?

¨ Why is mixing DDR generations such a problem? Transfers,
frequencies, power requirements, etc.

2

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.2

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.3

Topics covered in this lecture

¨ The memory hierarchy

¨ Enabling feature in caching

¨ Caching
¤ Direct mapped
¤ Associative
¤ N-way associativity

¨ A real-world example

3

COMPUTER SCIENCE DEPARTMENT

DATA MOVEMENTS

4

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.3

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.5

Moving data between the registers and memory is
strictly a program function

¨ The program loads data into registers and stores register data into
memory using machine instructions like mov

¨ It is the programmer’s or compiler’s responsibility to keep heavily
referenced data in the registers as long as possible
¤ The CPU will not automatically place data in general-purpose registers in

order to achieve higher performance

5

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.6

Program responsibility and obliviousness [1/2]

¨ Programs explicitly control access to registers, main memory, and
memory-hierarchy subsystems that are at the file storage level or lower

¨ Programs are largely unaware of the memory hierarchy between the
register level and main memory

6

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.4

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.7

Program responsibility and obliviousness [2/2]

¨ In particular, cache accesses are transparent to the program
¤ Access to these levels of the memory hierarchy usually occurs without any

intervention on a program’s part

¨ Programs simply access main memory, and the hardware and
operating system take care of the rest
¤ Really? Yes!!!

7

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.8

Responsibility for data movements

¨ If a program always accesses main memory, it will run slowly
¤ Modern DRAM main-memory subsystems are much slower than the CPU

¨ Cache memory subsystems and the CPU’s cache controller move data
between main memory and the L1, L2, and L3 caches
¤ So that the CPU can quickly access oft-requested data

¨ Likewise, it is the virtual memory subsystem’s responsibility to move
oft-requested data from hard disk to main memory

8

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.5

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.9

Mechanics of transparent data accesses

¨ With few exceptions, most memory subsystem accesses take place
transparently between
¤ One level of the memory hierarchy and
¤ the level immediately below or above it

9

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.10

For example, the CPU rarely accesses main memory
directly

¨ Instead, when the CPU requests data from memory, the L1 cache
subsystem takes over

¨ If the requested data is in the cache
¤ Cache hit

¤ The L1 cache subsystem returns the data to the CPU, and that concludes the
memory access

¨ If the requested data is not in the cache?
¤ Cache miss!

10

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.6

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.11

If the requested data isn’t present in the L1 cache
…

¨ The L1 cache subsystem passes the request down to the L2 cache
subsystem

¨ If the L2 cache subsystem has the data?
¤ The L2 Cache returns this data to the L1 cache, which then returns the data

to the CPU

¨ Requests for the same data in the near future will be fulfilled by the L1
cache rather than the L2 cache
¤ Because the L1 cache now has a copy of the data

11

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.12

What if the L2 cache does not have it?

¨ After the L2 cache, the L3 cache kicks in

¨ If none of the L1, L2, or L3 cache subsystems have a copy of the data,
the request goes to main memory
¤ If the data is found in main memory, the main-memory subsystem passes it to

the L3 cache
n The L3 cache then passes it to the L2 cache, which then passes it to the L1 cache

n The L1 cache then passes it to the CPU

¨ Once again, the data is now in the L1 cache, so any requests for this
data in the near future will be fulfilled by the L1 cache

12

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.7

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT

RELATIVE PERFORMANCE OF THE MEMORY
HIERARCHY

13

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.14

Relative performance of the memory system

¨ Registers are, unquestionably, the best place to store data you need to
access quickly
¤ Accessing a register never requires any extra time, and
¤ Most machine instructions that access data can access register data

¨ The difference in speed between the L1, L2, and L3 cache systems isn’t
so dramatic unless the secondary or tertiary cache is not packaged
together on the CPU

14

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.8

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.15

There are several reasons why L2 cache accesses
are slower than L1 accesses
¨ It takes the CPU time to determine that the data it’s seeking is not in

the L1 cache
¤ By the time it does that, the memory access cycle is nearly complete, and

there’s no time to access the data in the L2 cache

¨ The circuitry of the L2 cache may be slower than the circuitry of the
L1 cache in order to make the L2 cache less expensive

¨ L2 caches are usually 16 to 64 times larger than L1 caches
¤ Larger memory subsystems tend to be slower than smaller ones
¤ All this amounts to additional wait states for accessing data in the L2 cache

15

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.16

A similar performance gulf separates the L2 and L3
caches and L3 and main memory

¨ Main memory is typically one order of magnitude slower than the L3
cache; L3 accesses are much slower than L2 access

¨ To speed up access to adjacent memory objects, the L3 cache reads
data from main memory in cache lines

¨ Likewise, L2 cache reads cache lines from L3

16

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.9

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

COMPUTER SCIENCE DEPARTMENT HOW IS ALL THIS HAPPENING?
17

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.18

Up until this point

¨ We have treated the cache as a magical place that
¤ Automatically stores data when we need it, perhaps fetching new data as

the CPU requires it

¨ But how exactly does the cache do this?
¤ And what happens when it is full, and the CPU is requesting additional

data that’s not there?

18

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.10

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.19

Programs access only a small amount of data at a
given time

¨ A cache that is sized accordingly will improve their performance

¨ Unfortunately, the data that programs want rarely sits in contiguous
memory location
¤ It’s usually spread out all over the address space

19

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.20

Cache design considerations …

¨ Cache design must account for the fact that the cache must map data
objects at widely varying addresses in memory

¨ Cache memory is not organized in a single group of bytes
¤ Instead, it’s usually organized in blocks of cache lines

¤ Each line containing some number of bytes
n Typically, a small power of 2: like 16, 32, or 64

20

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.11

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.21

Cache lines

¨ For example, an 8 KB cache line is often organized as a set of 512
cache lines of 16 bytes each

… … 16-byte
cache line

8 KB with 512 16-byte cache lines

21

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.22

We can attach a different noncontiguous address to
each of the cache lines

¨ Cache line 0 might correspond to addresses 0x10000 through
0x1000F

¨ Cache line 1 might correspond to addresses 0x21400 through
0x2140F

22

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.12

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.23

Generally, if a cache line is n bytes long

¨ It will hold n bytes from main memory that fall on an n-byte boundary

¨ In our example of 16-byte cache lines, a cache line holds blocks of 16
bytes whose addresses fall on 16-byte boundaries in main memory
¤ i.e., the least-significant 4 bits of the address of the first byte in the cache

line are always 0

… … 16-byte
cache line

8 KB with 512 16-byte cache lines

23

COMPUTER SCIENCE DEPARTMENT

CACHING BEHIND THE SCENES

24

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.13

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.25

Types of caches

¨ Direct mapped caches

¨ Fully associative caches
¨ N-way associative caches

25

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.26

A direct mapped cache is also known as a one-way
associative cache

¨ In a direct-mapped cache, a particular block of main memory is
always loaded into—mapped to—the exact same cache line

¨ This mapping is determined by a small number of bits in the data
block’s memory address

26

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.14

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.27

Direct-mapped Cache

31 13 12 4 3 0

… 16-byte
cache line

8 KB with 512 16-byte cache lines

9 bits (4 through 12) of the physical memory
address provide an index to select one of
the 512 cache lines within the cache (29=512)

bits 0 through 3 determine the
particular byte within the 16-
byte cache line

27

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.28

Problems with a direct mapped cache

¨ Two different memory addresses located on 8KB boundaries cannot
both appear simultaneously in the cache

¨ How many such addresses exist in our 32-bit system?
¤ 219 8KB blocks exist in our system
¤ 219 512 (29) blocks of 16-bytes (24) each

n 219. 29 . 24 = 232 (the size of the main memory in our example)

28

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.15

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.29

The ideal world: A fully associative cache

¨ The cache controller can place a block of bytes in any one of the
cache lines present in the cache memory

¨ While this is the most flexible cache system, the extra circuitry to
achieve full associativity is expensive and, worse, can slow down the
memory subsystem

¨ Most L1 and L2 caches are not fully associative for this reason

29

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.30

Trade-off space

¨ A fully associative cache is too complex, too slow, and too expensive
to implement

¨ But a direct-mapped cache is too inefficient

30

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.16

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.31

A compromise: the n-way associative cache

¨ In an n-way set associative cache, the cache is broken up into sets of n
cache lines

¨ The CPU determines the particular set to use based on
¤ Some subset of the memory address bits, just as in the direct-mapping

scheme, and …
¤ The cache controller uses a fully associative mapping algorithm to determine

which one of the n cache lines within the set to use

31

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.32

For example, an 8KB two-way set associative cache
subsystem with 16-byte cache lines [1/2]

¨ Organizes the cache into 256 cache-line sets with two cache lines
each

¨ Eight bits from the memory address determine which one of these 256
different sets will contain the data
¤ 28 = 256

¨ Once the cache-line set is determined, the cache controller maps the
block of bytes to one of the two cache lines within the set

32

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.17

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.33

For example, an 8KB two-way set associative cache
subsystem with 16-byte cache lines [2/2]

¨ This means two different memory addresses located on 8KB
boundaries (addresses having the same value in bits 4 through 11) can
both appear simultaneously in the cache

¨ However, a conflict will occur if you attempt to access a third memory
location at an address that is an even multiple of 8KB

33

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.34

An 8 KB two-way set associative cache subsystem
with 16-byte cache lines

31 12 11 4 3 0

… 16-byte
cache line

8 KB with 2-way set associative cache with 256 sets of
two (16-byte) cache lines each

The cache controller chooses one of two
different cache lines within the set 28=256

bits 0 through 3 determine the
particular byte within the 16-
byte cache line

A cache line set
comprising
two cache lines

Eight bits (11 through 4) provide index to select
one of 256 sets 28=256

34

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.18

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.35

What if we have a 4-way associative cache

¨ A four-way set associative cache puts four associative cache lines in
each cache-line set

¨ In our example, 8KB cache, a four-way set associative caching scheme
would have 128 cache-line sets with four cache lines each

¨ This would allow the cache to maintain up to four different blocks of
data without a conflict, each of which would map to the same cache
line in a direct-mapped cache

35

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.36

2-/4-way set associative vs direct mapped

¨ A 2- or 4-way set associative cache is
¤ Much better than a direct-mapped cache and
¤ Considerably less complex than a fully associative cache

36

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.19

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.37

Can we keep increasing the number of lines in each
cache-line set?

¨ The more cache lines we have in each cache-line set, the closer we
come to creating a fully associative cache
¤ With all the attendant problems of complexity and speed

¨ Most cache designs are direct-mapped, two-way set associative, or
four-way set associative
¤ The various members of the 80x86 family make use of all three

37

COMPUTER SCIENCE DEPARTMENT

WHY (MAIN) MEMORY MATTERS …

38

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.20

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.39

An analogy: You at a government office

¨ Some interactions can be completed using your IDs/cards (in your
wallet), documents (in your backpack), and documents (at home)
¤ Items can be retrieved from the wallet in 2 seconds
¤ The bag needs to be searched, and it takes about 120 seconds to do so
¤ The trip home and back will take 36,000 seconds (or 10 hours)

¨ Average time to complete transaction if your wallet suffices 95% of
the time but the backpack comes into play 5% of time?
¤ 0.95 * (wallet_time) + 0.05 * (backpack_time)
¤ 0.95 * 2 + 0.05 * 120 = 7.9 seconds

39

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.40

An analogy: You at a government office

¨ Average time to complete transaction if your wallet suffices 95% of
the time but the backpack comes into play 4% of time and you need
to go home 1% of the time?
¤ 0.95 * (wallet_time) + 0.04 * (backpack_time) + 0.01 (home_trip)
¤ 0.95 * 2 + 0.04 * 120 + 0.01 * 36,000 = 505.9 seconds

40

SLIDES CREATED BY: SHRIDEEP PALLICKARA L10.21

CS250: Foundations of Computer Systems
Dept. Of Computer Science, Colorado State University

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.41

Let’s make it a little more real

¨ Cache access: 2 ns
¨ Main memory access: 50 ns
¨ Disk access: 8 milliseconds [8,000,000 ns]
¨ 97% cache and 3% main memory

¤ 0.97 * 2 + 0.03 * 50 = 3.4 ns

¨ 95% cache and 5% main memory
¤ 0.95 * 2 + 0.05 * 50 = 4.4 ns

¨ 95% cache, 4% main memory, and 1% disk
¤ 0.95 * 2 + 0.04 * 50 + 0.01 * 8,000,000 = 80,003.9 ns

41

MEMORYCOMPUTER SCIENCE DEPARTMENT
Professor: SHRIDEEP PALLICKARA L10.42

The contents of this slide-set are based on the
following references
¨ Jonathan E. Steinhart. The Secret Life of Programs: Understand Computers -- Craft

Better Code. ISBN-10/ ISBN-13 : 1593279701/ 978-1593279707. No Starch
Press. [Chapter 4]

¨ Randall Hyde. Write Great Code, Volume 1, 2nd Edition: Understanding the Machine
2nd Edition. ASIN: B07VSC1K8Z. No Starch Press. 2020. [Chapter 11]

¨ Matthew Justice. How Computers Really Work: A Hands-On Guide to the Inner
Workings of the Machine. ISBN-10/ISBN-13 : 1718500661/ 978-1718500662.
No Starch Press. 2020. [Chapter 7]

42

