1. Prove that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$ for every positive integer n.

Proof. We shall prove this using induction.
In the basis step, $n=1$, we see that

$$
1=1
$$

and

$$
\frac{n(n+1)}{2}=\frac{1(1+1)}{2}=1
$$

and so the basis step holds.
In the inductive step, we will assume that $1+2+3+\ldots+k=\frac{k(k+1)}{2}$ for some positive integer k and show that $1+2+3+\ldots+k+(k+1)=\frac{(k+1)(k+2)}{2}$. By the inductive hypothesis,

$$
1+2+3+\ldots+k+(k+1)=\frac{k(k+1)}{2}+(k+1)
$$

With some algebraic manipulation this becomes

$$
1+2+3+\ldots+k+(k+1)=\frac{k(k+1)+2(k+1)}{2}
$$

or

$$
1+2+3+\ldots+k+(k+1)=\frac{(k+1)(k+2)}{2}
$$

and so the inductive step holds.
Since the inductive step and the basis step hold, it is true that $1+2+3+\ldots+n=\frac{n(n+1)}{2}$ for every positive integer n.
2. Prove that $1+3+5+\ldots+(2 n-1)=n^{2}$ for every positive integer n.

Proof. We shall prove this using induction.
In the basis step, $n=1$, we see that

$$
2(1)-1=1
$$

and

$$
1^{2}=1
$$

and so the basis step holds.
In the inductive step, we will assume that $1+3+5+\ldots+(2 k-1)=k^{2}$ for some positive integer k and show that $1+3+5+\ldots+(2 k-1)+(2(k+1)-1)=(k+1)^{2}$. By the inductive hypothesis,

$$
1+3+5+\ldots+(2 k-1)+(2(k+1)-1)=k^{2}+(2(k+1)-1)=k^{2}+2 k+1
$$

Factoring this yields

$$
1+3+5+\ldots+(2 k-1)+(2(k+1)-1)=(k+1)^{2}
$$

and so the inductive step holds.
Since the inductive step and the basis step hold, it is true that $1+3+5+\ldots+(2 n-1)=n^{2}$ for every positive integer n.
3. Prove that $2^{n}>n^{2}$ for every positive n that is greater than 4 .

Proof. We shall prove this using induction.
In the basis step, $n=5$, we see that

$$
2^{5}=32>25=5^{2}
$$

and so the basis step holds.
In the inductive step, we will assume $2^{k}>k^{2}$ for some positive integer k and show that $2^{k+1}>(k+1)^{2}$. Applying the inductive hypothesis,

$$
2^{k+1}=2 * 2^{k}>2 k^{2}=k^{2}+k^{2}
$$

Note that for $k \geq 3$,

$$
k^{2}-2 k-1=(k-1)^{2}-2>0
$$

so

$$
k^{2}>2 k+1
$$

By substitution,

$$
2^{k+1}>k^{2}+k^{2}>k^{2}+2 k+1=(k+1)^{2}
$$

and hence the inductive step holds.
Since the inductive step and the basis step hold, $2^{n}>n^{2}$ for every positive n that is greater than 4.

There are many different ways to show

$$
k^{2}>2 k+1
$$

for $k \geq 3$ - it may be useful to practice using induction to show it.
4. Prove that $n^{5}-n$ is divisible by 5 for every positive integer n.

Proof. We shall prove this using induction.
In the basis step, $n=1$,

$$
n^{5}-n=1-1=0=5 * 0
$$

so the basis step holds.
In the inductive step, we assume $k^{5}-k$ is divisible by 5 for some positive integer k and we will show $(k+1)^{5}-(k+1)$ is divisible by 5 . Expanding the left-hand side yields,

$$
(k+1)^{5}-(k+1)=\left(k^{5}+5 k^{4}+10 k^{3}+10 k^{2}+5 k+1\right)-(k+1)
$$

or, combining like terms except for $\left(k^{5}-k\right)$,

$$
(k+1)^{5}-(k+1)=\left(k^{5}-k\right)+5\left(k^{4}+2 k^{3}+2 k^{2}+k\right) .
$$

Since this is the sum of two integers which are divisble by five, $(k+1)^{5}-(k+1)$ is divisible by 5 . Hence, the inductive step holds.
Since the inductive step and the basis step hold, $n^{5}-n$ is divisible by 5 for every positive integer n .
5. Prove that $1 * 2+2 * 3+3 * 4+\ldots+n *(n+1)=\frac{(n)(n+1)(n+2)}{3}$ for every positive integer n.

Proof. We shall prove this using induction.
In the basis step, $n=1$,

$$
1 * 2=2
$$

and

$$
\frac{(1)(2)(3)}{3}=2
$$

so the basis step holds.
In the inductive step, we assume $1 * 2+2 * 3+3 * 4+\ldots+k *(k+1)=\frac{(k)(k+1)(k+2)}{3}$ for some positive integer k and we will show $1 * 2+2 * 3+3 * 4+\ldots+k *(k+1)+(k+1) *(k+2)=\frac{(k+1)(k+2)(k+3)}{3}$. Applying the inductive hypothesis to the left-hand side yields
$1 * 2+2 * 3+3 * 4+\ldots+k *(k+1)+(k+1) *(k+2)=\frac{(k)(k+1)(k+2)}{3}+(k+1) *(k+2)$
or
$1 * 2+2 * 3+3 * 4+\ldots+k *(k+1)+(k+1) *(k+2)=\frac{(k)(k+1)(k+2)}{3}+\frac{3(k+1) *(k+2)}{3}$
which gives
$1 * 2+2 * 3+3 * 4+\ldots+k *(k+1)+(k+1) *(k+2)=\frac{k(k+1)(k+2)+3(k+1)(k+2)}{3}$
so

$$
1 * 2+2 * 3+3 * 4+\ldots+k *(k+1)+(k+1) *(k+2)=\frac{(k+3)(k+1)(k+2)}{3}
$$

and hence the inductive step holds.
Since the inductive step and the basis step hold, $1 * 2+2 * 3+3 * 4+\ldots+n *(n+1)=\frac{(n)(n+1)(n+2)}{3}$ for every positive integer n.
6. Find a formula for $\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots+\frac{1}{2^{n}}$ and prove it.

The formula is $1-2^{-n}$. The proof is left to the reader.
7. Consider the sequence: $1+2+4+8+16+\ldots$ What is the sum of the first n elements? Prove this.
The sum is $2^{n+1}-1$. The proof is left to the reader.

