
1. Prove that 1 + 2 + 3 + ... + n = n(n+1)
2 for every positive integer n.

Proof. We shall prove this using induction.

In the basis step, n = 1, we see that
1 = 1

and
n(n + 1)

2
=

1(1 + 1)

2
= 1

and so the basis step holds.

In the inductive step, we will assume that 1 + 2 + 3 + ...+k = k(k+1)
2 for some positive integer

k and show that 1 + 2 + 3 + ... + k + (k + 1) = (k+1)(k+2)
2 . By the inductive hypothesis,

1 + 2 + 3 + ... + k + (k + 1) =
k(k + 1)

2
+ (k + 1).

With some algebraic manipulation this becomes

1 + 2 + 3 + ... + k + (k + 1) =
k(k + 1) + 2(k + 1)

2
or

1 + 2 + 3 + ... + k + (k + 1) =
(k + 1)(k + 2)

2
and so the inductive step holds.

Since the inductive step and the basis step hold, it is true that 1 + 2 + 3 + ... + n = n(n+1)
2

for every positive integer n.

2. Prove that 1 + 3 + 5 + ... + (2n− 1) = n2 for every positive integer n.

Proof. We shall prove this using induction.

In the basis step, n = 1, we see that

2(1) − 1 = 1

and
12 = 1

and so the basis step holds.

In the inductive step, we will assume that 1 + 3 + 5 + ... + (2k − 1) = k2 for some positive
integer k and show that 1 + 3 + 5 + ...+ (2k− 1) + (2(k + 1)− 1) = (k + 1)2. By the inductive
hypothesis,

1 + 3 + 5 + ... + (2k − 1) + (2(k + 1) − 1) = k2 + (2(k + 1) − 1) = k2 + 2k + 1.

Factoring this yields

1 + 3 + 5 + ... + (2k − 1) + (2(k + 1) − 1) = (k + 1)2

and so the inductive step holds.

Since the inductive step and the basis step hold, it is true that 1 + 3 + 5 + ...+ (2n− 1) = n2

for every positive integer n.
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3. Prove that 2n > n2 for every positive n that is greater than 4.

Proof. We shall prove this using induction.

In the basis step, n = 5, we see that

25 = 32 > 25 = 52

and so the basis step holds.

In the inductive step, we will assume 2k > k2 for some positive integer k and show that
2k+1 > (k + 1)2. Applying the inductive hypothesis,

2k+1 = 2 ∗ 2k > 2k2 = k2 + k2.

Note that for k ≥ 3,
k2 − 2k − 1 = (k − 1)2 − 2 > 0,

so
k2 > 2k + 1.

By substitution,
2k+1 > k2 + k2 > k2 + 2k + 1 = (k + 1)2

and hence the inductive step holds.

Since the inductive step and the basis step hold, 2n > n2 for every positive n that is greater
than 4.

There are many different ways to show

k2 > 2k + 1

for k ≥ 3 - it may be useful to practice using induction to show it.

4. Prove that n5 − n is divisible by 5 for every positive integer n.

Proof. We shall prove this using induction.

In the basis step, n = 1,
n5 − n = 1 − 1 = 0 = 5 ∗ 0

so the basis step holds.

In the inductive step, we assume k5 − k is divisible by 5 for some positive integer k and we
will show (k + 1)5 − (k + 1) is divisible by 5. Expanding the left-hand side yields,

(k + 1)5 − (k + 1) = (k5 + 5k4 + 10k3 + 10k2 + 5k + 1) − (k + 1)

or, combining like terms except for (k5 − k),

(k + 1)5 − (k + 1) = (k5 − k) + 5(k4 + 2k3 + 2k2 + k).

Since this is the sum of two integers which are divisble by five, (k + 1)5 − (k + 1) is divisible
by 5. Hence, the inductive step holds.

Since the inductive step and the basis step hold, n5 − n is divisible by 5 for every positive
integer n.
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5. Prove that 1 ∗ 2 + 2 ∗ 3 + 3 ∗ 4 + ... + n ∗ (n + 1) = (n)(n+1)(n+2)
3 for every positive integer n.

Proof. We shall prove this using induction.

In the basis step, n = 1,
1 ∗ 2 = 2

and
(1)(2)(3)

3
= 2

so the basis step holds.

In the inductive step, we assume 1∗2+2∗3+3∗4+...+k∗(k+1) = (k)(k+1)(k+2)
3 for some positive

integer k and we will show 1∗2+2∗3+3∗4+ ...+k∗(k+1)+(k+1)∗(k+2) = (k+1)(k+2)(k+3)
3 .

Applying the inductive hypothesis to the left-hand side yields

1 ∗ 2 + 2 ∗ 3 + 3 ∗ 4 + ...+ k ∗ (k + 1) + (k + 1) ∗ (k + 2) =
(k)(k + 1)(k + 2)

3
+ (k + 1) ∗ (k + 2)

or

1 ∗ 2 + 2 ∗ 3 + 3 ∗ 4 + ...+k ∗ (k+ 1) + (k+ 1) ∗ (k+ 2) =
(k)(k + 1)(k + 2)

3
+

3(k + 1) ∗ (k + 2)

3

which gives

1 ∗ 2 + 2 ∗ 3 + 3 ∗ 4 + ... + k ∗ (k + 1) + (k + 1) ∗ (k + 2) =
k(k + 1)(k + 2) + 3(k + 1)(k + 2)

3

so

1 ∗ 2 + 2 ∗ 3 + 3 ∗ 4 + ... + k ∗ (k + 1) + (k + 1) ∗ (k + 2) =
(k + 3)(k + 1)(k + 2)

3

and hence the inductive step holds.

Since the inductive step and the basis step hold, 1∗2+2∗3+3∗4+...+n∗(n+1) = (n)(n+1)(n+2)
3

for every positive integer n.

6. Find a formula for 1
2 + 1

4 + 1
8 + ... + 1

2n and prove it.

The formula is 1 − 2−n. The proof is left to the reader.

7. Consider the sequence: 1 + 2 + 4 + 8 + 16 + ... What is the sum of the first n elements? Prove
this.

The sum is 2n+1 − 1. The proof is left to the reader.
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