Chapter 8 Multidimensional Arrays

CS1: Java Programming Colorado State University

Original slides by Daniel Liang Modified slides by Chris Wilcox

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.

Announcements

- Lab Wednesday
- Review in Lecture Wednesday Bring Questions
- Exam Friday
- Spring Break next week get some rest!

Motivations

Thus far, you have used one-dimensional arrays to model linear collections of elements. You can use a two-dimensional array to represent a matrix or a table. For example, the following table that describes the distances between the cities can be represented using a two-dimensional array.

	Distance Table (in miles)						
	Chicago	Boston	New York	Atlanta	Miami	Dallas	Houston
Chicago	0	983	787	714	1375	967	1087
Boston	983	0	214	1102	1763	1723	1842
New York	787	214	0	888	1549	1548	1627
Atlanta	714	1102	888	0	661	781	810
Miami	1375	1763	1549	661	0	1426	1187
Dallas	967	1723	1548	781	1426	0	239
Houston	1087	1842	1627	810	1187	239	0

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.

Other Representations?

What are some other representations of multidimensional arrays?

Declare/Create Two-dimensional Arrays

// Declare array ref var
dataType[][] refVar;

// Create array and assign its reference to
variable
refVar = new dataType[10][10];

// CombineD
dataType[][] refVar = new dataType[10][10];

Declaring Variables of Twodimensional Arrays and Creating Two-dimensional Arrays

int[][] matrix = new int[10][10];

matrix[0][0] = 3;

14

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.

Two-dimensional Array Illustration

Declaring, Creating, and Initializing Using Shorthand Notations

You can also use an array initializer to declare, create and initialize a two-dimensional array. For example,

Lengths of Two-dimensional Arrays

int[][] x = new int[3][4];

Lengths of Two-dimensional Arrays, cont.

array.length array[0].length array[1].length array[2].length array[3].length

18

int[][] array = {
 {1, 2, 3},
 {4, 5, 6},
 {7, 8, 9},
 {10, 11, 12}
};

array[4].length ArrayIndexOutOfBoundsException

Ragged Arrays

Each row in a two-dimensional array is itself an array. So, the rows can have different lengths. Such an array is known as *a ragged array*. For example,

int[][] matrix = {

$$\{1, 2, 3, 4, 5\},\$$

 $\{2, 3, 4, 5\},\$
 $\{3, 4, 5\},\$
 $\{4, 5\},\$
 $\{5\}$

matrix.length is 5 matrix[0].length is 5 matrix[1].length is 4 matrix[2].length is 3 matrix[3].length is 2 matrix[4].length is 1

Ragged Arrays, cont.

rights reserved.

Initializing arrays with random values

```
for (int row = 0; row < mat.length; row++)
{
   for (int col = 0; col < mat[row].length; col++)
    {
      mat[row][col] = (int)(Math.random() * 100);
   }
</pre>
```


Printing arrays

```
for (int row = 0; row < mat.length; row++)
{
  for (int col = 0; col < mat[row].length; col++)
  {
    System.out.print(mat[row][col] + " ");
  }</pre>
```

System.out.println();

Summing elements by column

```
for (int coL = 0; col < mat[0].length; col++)
{
    int total = 0;
    for (int row = 0; row < mat.length; row++)
        total += matrix[row][column];</pre>
```

System.out.println(column + " is " + total);

