Lecture 2

26

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.

Review

Given an int number, e.g.: int number = 10;

Write code that, if the number is a multiple of 5, it prints HiFive, and if the number is divisible by 2, it prints HiEven.

Logical Operators

Operator	Name	Description
?	not	logical negation
&&	and	logical conjunction
	or	logical disjunction

Truth Table for not Operator: !

р	!p	Example (assume age = 24, weight = 140)
true	false	!(age > 18) is false, because (age > 18) is true.
false	true	!(weight == 150) is true, because (weight == 150) is false.

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.

Truth Table for and Operator: &&

p 1	p ₂	p ₁ && p ₂	Example (assume age = 24, weight = 140)
false	false	false	(age ≤ 18) && (weight ≤ 140) is false, because both conditions are both false.
false	true	false	(age <=18) && (weight ==140) is false, because one condition is false
true	false	false	(age > 18) && (weight > 140) is false, because (weight > 140) is false.
true	true	true	(age > 18) && (weight >= 140) is true, because both
			(age $>$ 18) and (weight $>=$ 140) are true.

Truth Table for or Operator: ||

p ₁	p ₂	$\mathbf{p}_1 \parallel \mathbf{p}_2$	Example (assume age = 24, weight = 140)
false	false	false	$(age > 34) \parallel (weight >= 150)$ is false, because both evaluate to false
false	true	true	$(age > 34) \parallel (weight <= 140)$ is true, because $(age > 34)$ is false, but (weight <= 140) is true.
true	false	true	$(age > 14) \parallel (weight >= 150)$ is false, because $(age > 14)$ is true.
true	true	true	$(age > 14) \parallel (weight <=150)$ is true, because both conditions evaluate to true

Practice: Determining Leap Year?

This program first prompts the user to enter a year as an <u>int</u> value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by 100, or it is divisible by 400.

You try: How would you write this conditional?

Problem: Determining Leap Year?

This program first prompts the user to enter a year as an <u>int</u> value and checks if it is a leap year.

A year is a leap year if it is divisible by 4 but not by 100, or it is divisible by 400.

 $(year \% 4 == 0 \&\& year \% 100 != 0) \parallel (year \% 400 == 0)$

Problem: Computing Taxes

The US federal personal income tax is calculated based on the filing status and taxable income. There are four filing statuses: single filers, married filing jointly, married filing separately, and head of household. The tax rates for 2009 are shown below.

Marginal Tax Rate	Single	Married Filing Jointly or Qualifying Widow(er)	Married Filing Separately	Head of Household
10%	\$0 - \$8,350	\$0-\$16,700	\$0 - \$8,350	\$0 - \$11,950
15%	\$8,351 - \$33,950	\$16,701 - \$67,900	\$8,351 - \$33,950	\$11,951 - \$45,500
25%	\$33,951 - \$82,250	\$67,901 - \$137,050	\$33,951 - \$68,525	\$45,501 - \$117,450
28%	\$82,251 - \$171,550	\$137,051 - \$208,850	\$68,526 - \$104,425	\$117,451 - \$190,200
33%	\$171,551 - \$372,950	\$208,851 - \$372,950	\$104,426 - \$186,475	\$190,201 - \$372,950
35%	\$372,951+	\$372,951+	\$186,476+	\$372,951+

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.

Problem: Computing Taxes, cont.

```
if (status == 0) {
  // Compute tax for single filers
}
else if (status == 1) {
  // Compute tax for married file jointly
  // or qualifying widow(er)
}
else if (status == 2) {
  // Compute tax for married file separately
}
else if (status == 3) {
  // Compute tax for head of household
}
else {
  // Display wrong status
}
                                     ComputeTax
                                                  Run
```

switch Statements

switch (status) {

}

case 0: compute taxes for single filers; break;

- case 1: compute taxes for married file jointly; break;
- case 2: compute taxes for married file separately; break;
- case 3: compute taxes for head of household; break;

default: System.out.println("Errors: invalid status");
 System.exit(1);

switch Statement Flow Chart

Liang, Introduction to Java Programming, Tenth Edition, (c) 2015 Pearson Education, Inc. All rights reserved.

Trace switch statement

Suppose day is 2:

```
switch (day) {
```

case 1:

case 2:

case 3:

case 4:

case 5: System.out.println("Weekday"); break;

case 0:

}

```
case 6: System.out.println("Weekend");
```


Trace switch statement

Match case 2

switch (day) {

case 1:

case 2:

case 3:

case 4:

case 5: System.out.println("Weekday"); break;

case 0:

}

case 6: System.out.println("Weekend");

Trace switch statement

Fall through case 3

switch (day) {

case 1:

case 2:

case 3:

case 4:

case 5: System.out.println("Weekday"); break;

case 0:

}

case 6: System.out.println("Weekend");

Trace switch statement

Fall through case 4

switch (day) {

case 1:

case 2:

case 3:

case 4:

case 5: System.out.println("Weekday"); break;

case 0:

}

case 6: System.out.println("Weekend");

Trace switch statement

Fall through case 5

switch (day) {

case 1:

case 2:

case 3:

case 4:

case 5: System.out.println("Weekday"); break;

case 0:

}

case 6: System.out.println("Weekend");

Trace switch statement

Encounter break

- switch (day) {
 - case 1:
 - case 2:
 - case 3:
 - case 4:

case 5: System.out.println("Weekday"); break;

case 0:

}

```
case 6: System.out.println("Weekend");
```


Trace switch statement

Your Turn!

- Write a program that will allow a user to choose the size of drink that they want and will output the price of the drink using a switch statement:
- Small: \$1.00

Medium: \$1.50

Large: \$2.00

Big gulp: \$3.00

