
1/24/16	

1	

Java classes

Savitch, ch 5

2

Outline

n  Objects, classes, and object-oriented
programming
q  relationship between classes and objects
q  abstraction

n  Anatomy of a class
q  instance variables
q  instance methods
q  constructors

3

Objects and classes
n  object: An entity that combines state and behavior.

q  object-oriented programming (OOP): Writing
programs that perform most of their behavior as
interactions between objects.

n  class:
1. A program/module. or:
2. A blueprint/template for creating an object.

q  classes you have used so far:
 String, Scanner, File

n  We will write classes to define new types of objects.

4

Abstraction
n  abstraction: A distancing between ideas and details.

q  Objects in Java provide abstraction:
We can use them without knowing how they work.

n  You use abstraction every day.
Example: Your portable music player.
q  You understand its external behavior (buttons, screen, etc.)
q  You don't understand its inner details (and you don't need to).

1/24/16	

2	

5

Class = blueprint, Object = instance
Music player blueprint

state:
current song
volume
battery life
behavior:
power on/off
change station/song
change volume
choose random song

Music player #1
state:
 song = "Thriller"
 volume = 17
 battery life = 2.5 hrs
behavior:
 power on/off
 change station/song
 change volume
 choose random song

Music player #2
state:
 song = ”Feels like rain"
 volume = 9
 battery life = 3.41 hrs
behavior:
 power on/off
 change station/song
 change volume
 choose random song

Music player #3
state:
 song = "Code Monkey"
 volume = 24
 battery life = 1.8 hrs
behavior:
 power on/off
 change station/song
 change volume
 choose random song

How often would you expect to get
snake eyes?

If you’re unsure on how to
compute the probability then
you write a program that
simulates the process

Snake Eyes
public class SnakeEyes {

 public static void main(String [] args){
 int ROLLS = 100000;

 int count = 0;

 Die die1 = new Die();
 Die die2 = new Die();
 for (int i = 0; i < ROLLS; i++){
 if (die1.roll() == 1 && die2.roll() == 1){
 count++;

 }

 }

 System.out.println(”snake eyes probability: " +
(float)count / ROLLS);

 }

}

Need to write the Die class!

8

Die object

n  State (data) of a Die object:

n  Behavior (methods) of a Die object:

Method name Description

roll() roll the die (and return the value rolled)

getFaceValue() retrieve the value of the last roll

Instance variable Description

numFaces the number of faces for a die

faceValue the current value produced by rolling the die

1/24/16	

3	

9

The Die class

n  The class (blueprint) knows how to create objects.
 Die class

state:
int numFaces
int faceValue
behavior:
roll()
getFaceValue()

Die object #1
state:
numFaces = 6

faceValue = 2

behavior:
roll()
getFaceValue()

Die object #2
state:
numFaces = 6

faceValue = 5

behavior:
roll()
getFaceValue()

Die object #3
state:
numFaces = 10

faceValue = 8

behavior:
roll()
getFaceValue()

Die die1 = new Die();

10

Object state:
instance variables

11

Die class

n  The following code creates a new class named Die.

public class Die {
 int numFaces;
 int faceValue;
}

q  Save this code into a file named Die.java.

n  Each Die object contains two pieces of data:
q  an int named numFaces,
q  an int named faceValue

n  No behavior (yet).

declared outside of
any method

12

Instance variables
n  instance variable: A variable inside an object that holds

part of its state.
q  Each object has its own copy.

n  Declaring an instance variable:
 <type> <name> ;

public class Die {
 int numFaces;
 int faceValue;
}

1/24/16	

4	

Instance variables
 Each Die object maintains its own numfaces and
faceValue variable, and thus its own state

 Die die1 = new Die();
 Die die2 = new Die();

die1 5 numfaces

faceValue

die2 6 numfaces

faceValue

2

3

14

Accessing instance variables

n  Code in other classes can access your object's
instance variables.

q  Accessing an instance variable: dot operator

 <variable name>.<instance variable>

q  Modifying an instance variable:

 <variable name>.<instance variable> = <value> ;

n  Examples:
System.out.println(”you rolled " + die.faceValue);
die.faceValue = 20;

15

Client code
q  Die.java can be made executable by giving it a main …

n  We will almost always do this…. WHY?
n  To test the class Die before it is used by other classes

q  or can be used by other programs stored in separate .java files.
q  client code: Code that uses a class

Roll.java (client code)

main(String[] args) {
 Die die1 = new Die();
 die1.numFaces = 6;
 die1.faceValue = 5;

 Die die2 = new Die();
 die2.numFaces = 10;
 die2.faceValue = 3;
 ...
}

Die.java

public class Die {
 int numFaces;
 int faceValue;
}

16

Object behavior: methods

1/24/16	

5	

17

Instance methods

n  Classes combine state and behavior.
n  instance variables: define state
n  instance methods: define behavior for each

object of a class. Are the way objects
communicate with each other and with users

n  instance method declaration, general syntax:

 public <type> <name> (<parameter(s)>) {
 <statement(s)> ;
 }

Rolling the dice: instance methods
public class Die {

 int numFaces;
 int faceValue;
 public int roll (){
 faceValue = (int)(Math.random() * numFaces) + 1;
 return faceValue;
 }

}

Die die1 = new Die();
die1.numFaces = 6;
int value1 = die1.roll();
Die die2 = new Die();
die2.numFaces = 10;
int value2 = die2.roll();

Think of each Die object as having its own
copy of the roll method, which operates
on that object's state

20

Object initialization:
constructors

21

Initializing objects

n  When we create a new object, we can assign
values to all, or some of, its instance variables:

 Die die2 = new Die();

 Die die1 = new Die(6);

How do we make that happen?

1/24/16	

6	

Die constructor
public class Die {

 int numFaces;
 int faceValue;

 public Die (int faces) {
 numFaces = faces;

 faceValue = 1;
 }

 public int roll (){
 faceValue = (int)(Math.random()*numFaces) + 1;
 return faceValue;
 }

}

Die die1 = new Die(6);

23

Constructors

n  constructor: creates and initializes a new object

 public <type> (<parameter(s)>) {
 <statement(s)> ;
 }

q  For a constructor the <type> is the name of the class
q  A constructor runs when the client uses the new keyword.

q  A constructor implicitly returns the newly created and initialized
object.

q  If a class has no constructor, Java gives it a default constructor
with no parameters that sets all the object's fields to 0 or null.
n  we did this in Recap.java

Multiple constructors are possible
public class Die {

 int numFaces;
 int faceValue;

 public Die () {
 numFaces = 6;

 faceValue = 1;
 }

 public Die (int faces) {
 numFaces = faces;

 faceValue = 1;
 }

}

Die die1 = new Die(5);
Die die2 = new Die();

The Student class
n  Let’s write a class called Student with the

following state and behavior:

Student
state:
String name
String id
int[] grades
behavior:
Constructor – takes id and name
numGrades – returns the number of grades
addGrade – adds a grade
getAverage – computes the average grade

1/24/16	

7	

26

Encapsulation

27

Encapsulation

n  encapsulation:
Hiding implementation details of an object
from clients.

n  Encapsulation provides abstraction;
we can use objects without knowing how they
work.
The object has:
q  an external view (its behavior)
q  an internal view (the state and methods that

accomplish the behavior)

28

Implementing encapsulation
n  Instance variables can be declared private to indicate

that no code outside their own class can access or
change them.
q  Declaring a private instance variable:
 private <type> <name> ;

q  Examples:

 private int faceValue;
 private String name;

n  Once instance variables are private, client code cannot
access them:
 Roll.java:11: faceValue has private access in Die
 System.out.println(”faceValue is " + die.faceValue);
 ^

Instance variables, encapsulation and access

n  In our previous implementation of the Die class we used
the public access modifier:

 public class Die {
 public int numFaces;
 public int faceValue;

 }

n  We can encapsulate the instance variables using private:
 public class Die {

 private int numFaces;
 private int faceValue;

 }
 But how does a client class now get to these?

1/24/16	

8	

30

Accessors and mutators
n  We provide accessor methods to examine their values:

 public int getFaceValue() {
 return faceValue;
 }

q  This gives clients read-only access to the object's fields.
q  Client code will look like this:
 System.out.println(”faceValue is " + die.getFaceValue());

n  If required, we can also provide mutator methods:

 public void setFaceValue(int value) {
 faceValue = value;
 }

Often not needed. Do we need a mutator method in this case?

31

Benefits of encapsulation

n  Protects an object from unwanted access by clients.
q  Example: If we write a program to manage users' bank accounts, we

don't want a malicious client program to be able to arbitrarily change
a BankAccount object's balance.

n  Allows you to change the class implementation later.

n  As a general rule, all instance data should be modified only
by the object, i.e. instance variables should be declared
private

Access Protection: Summary

Access protection has three main benefits:
n  It allows you to enforce constraints on an object's state.
n  It provides a simpler client interface. Client programmers

don't need to know everything that’s in the class, only the
public parts.

n  It separates interface from implementation, allowing
them to vary independently.

General guidelines

As a rule of thumb:
n  Classes are public.
n  Instance variables are private.
n  Constructors are public.
n  Getter and setter/mutator methods are public
n  Other methods must be decided on a case-by-

case basis.

1/24/16	

9	

Printing Objects
n  We would like to be able to print a Java object like this:

Student student = new Student(…);
System.out.println(“student: " + student);

n  Would like this to provide output that is more useful than
what Java provides by default.
q  Need to provide a toString() method

The toString() method
n  tells Java how to represent an object as a String

n  called when an object is printed or concatenated to a
String:

 Point p = new Point(7, 2);
 System.out.println(”p: " + p);

q  Same as:

 System.out.println("p: " + p.toString());

n  Every class has a toString(), even if it isn't in your code.
q  The default is the class's name and a hex (base-16) hash-code:

 Point@9e8c34

toString() implementation

 public String toString() {
 code that returns a suitable String;
 }

q  Example: toString() method for our Student class:

public String toString(){

 return ”name: " + name+ "\n"

 + ”id: " + id + "\n"

 + ”average: " + getAverage();

}

Variable shadowing

n  A method parameter can have the same name as one of
the instance variables:
public class Point {
 private int x;
 private int y;
 …
 // this is legal
 public void setLocation(int x, int y) {
 // when using x and y you get the parameters
 }

q  Instance variables x and y are shadowed by parameters with the
same names.

1/24/16	

10	

Avoiding variable shadowing

 public class Point {
 private int x;
 private int y;

 ...

 public void setLocation(int x_value, int y_value) {
 x = x_value;
 y = y_value;
 }
 }

Avoiding shadowing using this

 public class Point {
 private int x;
 private int y;

 ...

 public void setLocation(int x, int y) {
 this.x = x;
 this.y = y;
 }
 }

n  Inside the setLocation method,

q  When this.x is seen, the instance variable x is used.
q  When x is seen, the parameter x is used.

Multiple constructors

n  It is legal to have more than one constructor in a class.
q  The constructors must accept different parameters.

 public class Point {
 private int x;
 private int y;

 public Point() {
 x = 0;
 y = 0;
 }

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

Constructors and this

n  One constructor can call another using this:

 public class Point {
 private int x;
 private int y;

 public Point() {
 this(0, 0); //calls the (x, y) constructor
 }

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 ...
 }

1/24/16	

11	

Summary of this
n  this : A reference to the current instance of a given

class
n  using this:

q  To refer to an instance variable:
 this.variable

q  To call a method:

 this.method(parameters);

q  To call a constructor from another constructor:
 this(parameters);

Example of using this
public class MyThisTest {
 private int a;
 public MyThisTest() {
 this(42);
 }
 public MyThisTest(int a) {
 this.a = a;
 }
 public void someSomething() {
 int a = 1;
 System.out.println(a);
 System.out.println(this.a);
 System.out.println(this);
 }
 public String toString() {
 return "MyThisTest a=" + a; // refers to the instance variable a
 }
}

44

The implicit parameter
q  During the call die.roll(); ,

the object referred to by die is the implicit parameter to
the method.

q  The method int roll() is really int roll(Die this)

q  The call die.roll() is translated to roll(die)

Method overloading

n  Can you write different methods that have the same
name?

n  Yes!
 System.out.println(“I can handle strings”);
 System.out.println(2 + 2);

 System.out.println(3.14);

 System.out.println(object);

 Math.max(10, 15); // returns integer

 Math.max(10.0, 15.0); // returns double

Useful when you need to perform the same operation on different
kinds of data.

1/24/16	

12	

Method overloading

public int sum(int num1, int num2){
 return num1 + num2;

}
public int sum(int num1, int num2, int num3){

 return num1 + num2 + num3;

}
n  A method’s name + number, type, and order of its

parameters: method signature
n  The compiler uses a method’s signature to bind a method

invocation to the appropriate definition

The return value is not part of the
signature
n  You cannot overload on the basis of the return

type (because it can be ignored)
 Example of invalid overloading:
public int convert(int value) {

 return 2 * value;
}

public double convert(int value) {

 return 2.54 * value;

}

Example

n  Consider the class Pet
 class Pet {
 private String name;

 private int age;

 private double weight;

 …

 }

Example (cont)

 public Pet()
 public Pet(String name, int age, double weight)

 public Pet(int age)

 public Pet(double weight)

 Suppose you have a horse that weighs 750 pounds; you use:
 Pet myHorse = new Pet(750.0);
 but what happens if you do:
 Pet myHorse = new Pet(750); ?

1/24/16	

13	

Primitive Equality

n  Suppose we have two integers i and j
n  How does the statement i==j behave?
n  i==j if i and j contain the same value

Object Equality

n  Suppose we have two pet instances pet1
and pet2

n  How does the statement pet1==pet2
behave?

Object Equality

n  Suppose we have two pet instances pet1
and pet2

n  How does the statement pet1==pet2
behave?

n  pet1==pet2 is true if both refer to the same
object

n  The == operator checks if the addresses of
the two objects are equal

n  May not be what we want!

 52

Object Equality

n  Consider the following lines of code:
String s1 = new String(“Java”);
String s2 = new String(“Java”);

Is s1==s2 True?

a) Yes b) No

1/24/16	

14	

.equals for the Pet class

public boolean equals (Object other) {
 if (!(other instanceof Pet)) {
 return false;

 }
 Pet otherPet = (Pet) other;
 return ((this.age == otherPet.age)

 &&(Math.abs(this.weight – otherPet.weight) < 1e-8)
 &&(this.name.equals(otherPet.name)));
}

This is not explained correctly in the book (section 5.3)!!

Naming things

n  Computer programs are written to be read by
humans and only incidentally by computers.

n  Use names that convey meaning
n  Loop indices are often a single character (i, j,

k), but others should be more informative.
n  Importance of a name depends on its scope:

Names with a “short life” need not be as
informative as those with a “long life”

n  Read code and see how others do it

