1/24/16

Java classes

Savitch, ch 5

Outline

Objects, classes, and object-oriented
programming

o relationship between classes and objects
o abstraction

Anatomy of a class

o instance variables

o instance methods

o constructors

Objects and classes

object: An entity that combines state and behavior.

o object-oriented programming (OOP): Writing
programs that perform most of their behavior as
interactions between objects.

class:

1. A program/module. or:

2. A blueprint/template for creating an object.

o classes you have used so far:

String, Scanner, File
We will write classes to define new types of objects.

Abstraction

abstraction: A distancing between ideas and details.
o Objects in Java provide abstraction:
We can use them without knowing how they work.

You use abstraction every day.
Example: Your portable music player.
o You understand its external behavior (buttons, screen, etc.)

o You don't understand its inner details (and you don't need to).

1/24/16

Class = blueprint, Object = instance How often would you expect to get
-y snake eyes?
volume
E&YH/W If you're unsure on how to
Egt‘;”“m/gg compute the probability then

you write a program that

simulates the process
Music player #1 Music player #2 Music player #3

state: state: state:

song = "Thriller" song = "Feels like rain" song = "Code Monkey"

volume = 17 volume = 9 volume =

battery life = 2.5 hrs battery life = 3.41 hrs battery life = 1.8 hrs
behavior: behavior: behavior:

power on/off power on/off power on/off

change station/song change station/song change station/song

change volume change volume change volume

choose random song choose random song choose random song

Snake Eyes Die object

public class SnakeEyes {

State (data) of a Die object:

public static void main(String [] args) {
int ROLLS = 100000; Instance variable Description
int count = 0; numFaces the number of faces for a die
Die diel = new Die(); . . - -
. j . 0 Need to write the Die class! facevalue the current value produced by rolling the die
Die die2 = new Die();
for (int i =07 i < ROLLS; i++){ Behavior (methods) of a Die object:
if (diel.roll() == 1 && die2.roll() == 1){
count++; Method name Description
! roll() roll the die (and return the value rolled)
} -
L Lo getFaceValue () retrieve the value of the last roll
System.out.println(”snake eyes probability: " +
(float)count / ROLLS) ;
} s

1/24/16

The Die class

The class (blueprint) knows how to create objects.

Die class

state:

int numFaces
int faceValue
behavior:

roll ()
getFaceValue ()

Die object #1 Die object #2 Die object #3
state: state: state:
numFaces = 6 numFaces = 6 numFaces = 10
facevalue = 2 facevalue = 5 facevalue = 8
behavior: behavior: behavior:
roll() roll() roll()
getFaceValue () getFaceValue () getFaceValue ()

Die diel = new Die();

9

Object state:
instance variables

Die class

The following code creates a new class named Die.
public class Die {

int numFaces; declared outside of
int facevalue; any method
}

o Save this code into a file named Die. java.

Each Die object contains two pieces of data:
o an int named numFaces,

o an int named facevValue

No behavior (yet).

Instance variables

instance variable: A variable inside an object that holds
part of its state.

o Each object has its own copy.
Declaring an instance variable:
<type> <name> ;

public class Die {
int numFaces;
int facevValue;

1/24/16

Instance variables

Each pie object maintains its own numfaces and
facevalue variable, and thus its own state

Die diel = new Die();
Die die2 = new Die();

diel _ numfaces El
facevalue El

die2 numfaces Izl
faceValue IZ'

Accessing instance variables

Code in other classes can access your object's
instance variables.
o Accessing an instance variable: dot operator

<variable name> . <instance variable>

o Modifying an instance variable:
<variable name> . <instance variable> = <value> ;
Examples:

System.out.println(”you rolled " + die.faceValue);
die.faceValue = 20;

Client code
0 Die.java canbe made executable by giving it a main ...
We will almost always do this.... WHY?
To test the class Die before it is used by other classes

o or can be used by other programs stored in separate . java files.

o client code: Code that uses a class

Roll.java (client code

main(string[] args) {

Die diel = new Die(); i iavn
diel.numFaces = 6; 0
diel.faceValue = 5;

public class Die {
Die die2 = new Die(); int numFaces;
die2.numFaces = 10; int faceValue;
die2.faceValue = 3;)

Object behavior: methods

1/24/16

Instance methods

Classes combine state and behavior.
instance variables: define state

instance methods: define behavior for each
object of a class. Are the way objects
communicate with each other and with users

instance method declaration, general syntax:

public <type> <name> (<parameter(s)>) {
<statement(s)> ;

Rolling the dice: instance methods

public class Die {
int numFaces;
int faceValue;
public int roll (){

faceValue = (int) (Math.random() * numFaces) + 1;
return faceValue;

}

Die diel = new Die();
diel.numFaces = 6;

int valuel = diel.roll();
Die die2 = new Die();
die2.numFaces = 10;

int value2 = die2.roll();

Think of each Die object as having its own
copy of the ro11 method, which operates
on that object's state

Object initialization:
constructors

Initializing objects

When we create a new object, we can assign
values to all, or some of, its instance variables:

Die die2 = new Die();

Die diel = new Die(6);

How do we make that happen?

1/24/16

Die constructor

public class Die {
int numFaces;

int facevalue; Die diel = new Die(6);

public Die (int faces) {
numFaces = faces;
facevalue = 1;

public int roll () {
faceValue = (int) (Math.random()*numFaces)
return faceValue;

+

1;

Constructors

constructor: creates and initializes a new object
public <type> (<parameter(s)>) {
<statement(s)> ;

}
o For a constructor the <type> is the name of the class

A constructor runs when the client uses the new keyword.

[}

A constructor implicitly returns the newly created and initialized
object.

If a class has no constructor, Java gives it a default constructor
with no parameters that sets all the object's fields to 0 or null.

[ul

o

we did this in Recap.java

Multiple constructors are possible

public class Die {
int numFaces;

int faceValue; new Die(5);

new Die();

Die diel
Die die2

public Die () {
numFaces = 6;
facevalue = 1;

}

public Die (int faces) {
numFaces = faces;
facevValue = 1;

The Student class

Let's write a class called Student with the
following state and behavior:

Student
state:
String name
String id
int[] grades
behavior:
Constructor - takes id and name
numGrades - returns the number of grades
addGrade - adds a grade
getAverage — computes the average grade

1/24/16

Encapsulation

Encapsulation

encapsulation:
Hiding implementation details of an object
from clients.

Encapsulation provides abstraction;

we can use objects without knowing how they
work.

The object has:

o an external view (its behavior)

o an internal view (the state and methods that
accomplish the behavior)

Implementing encapsulation

Instance variables can be declared private to indicate
that no code outside their own class can access or
change them.

o Declaring a private instance variable:
private <type> <name> ;
o Examples:

private int faceValue;
private String name;

Once instance variables are private, client code cannot
access them:

Roll.java:11l: faceValue has private access in Die

System.out.println(”faceValue is " + die.faceValue);
~

Instance variables, encapsulation and access

In our previous implementation of the Die class we used
the public access modifier:
public class Die {
public int numFaces;
public int faceValue;
}
We can encapsulate the instance variables using private:
public class Die {
private int numFaces;
private int faceValue;
}

But how does a client class now get to these?

1/24/16

Accessors and mutators

We provide accessor methods to examine their values:

public int getFaceValue() {
return faceValue;
}
o This gives clients read-only access to the object's fields.
a Client code will look like this:
System.out.println(”faceValue is " + die.getFaceValue());

If required, we can also provide mutator methods:

public void setFaceValue (int value) {
facevValue = value;

}

Often not needed. Do we need a mutator method in this case?

Benefits of encapsulation

Protects an object from unwanted access by clients.

o Example: If we write a program to manage users' bank accounts, we
don't want a malicious client program to be able to arbitrarily change
a BankAccount object's balance.

Allows you to change the class implementation later.

As a general rule, all instance data should be modified only
by the object, i.e. instance variables should be declared
private

Access Protection: Summary

Access protection has three main benefits:
It allows you to enforce constraints on an object's state.
It provides a simpler client interface. Client programmers
don't need to know everything that’s in the class, only the
public parts.
It separates interface from implementation, allowing
them to vary independently.

General guidelines

As a rule of thumb:
Classes are public.
Instance variables are private.
Constructors are public.
Getter and setter/mutator methods are public
Other methods must be decided on a case-by-
case basis.

1/24/16

Printing Objects

We would like to be able to print a Java object like this:

Student student = new Student (..);
System.out.println(“student: " + student);

Would like this to provide output that is more useful than
what Java provides by default.

o Need to provide a toString() method

The toString () method

tells Java how to represent an object as a String
called when an object is printed or concatenated to a

String:
Point p = new Point (7, 2);
System.out.println(”“p: " + p);
o Same as:

System.out.println("p: " + p.toString());

Every class has a tostring (), even ifitisn't in your code.

o The default is the class's name and a hex (base-16) hash-code:

Point@9e8c34

toString () implementation

public String toString() {
code that returns a suitable String;

o Example: toString() method for our Student class:

public String toString() {

return “name: " + name+ "\n"
+ 7id: "+ id + "\n"
+ "average: " + getAverage();

Variable shadowing

A method parameter can have the same name as one of
the instance variables:
public class Point {

private int x;

private int y;

// this is legal
public void setLocation(int x, int y) {
// when using x and y you get the parameters

}

Instance variables x and y are shadowed by parameters with the
same names.

[}

1/24/16

Avoiding variable shadowing

public class Point {
private int x;
private int y;

public void setLocation(int x_value, int y_value) {
x = x_value;
y = y_value;

Avoiding shadowing using this

public class Point {
private int x;
private int y;

public void setLocation(int x, int y) {
this.x = x;
this.y = y;

Inside the setLocation method,
o When this.x is seen, the instance variable x is used.
o When x is seen, the parameter x is used.

Multiple constructors

It is legal to have more than one constructor in a class.
o The constructors must accept different parameters.
public class Point {
private int x;
private int y;

public Point() {

x 0;

y 0;

}

public Point (int x, int y) {
this.x = x;
this.y = y;

Constructors and this

One constructor can call another using this:

public class Point {
private int x;
private int y;

public Point() {
this (0, 0); //calls the (x, y) constructor

}

public Point(int x, int y) {
this.x = x;
this.y = y;

10

1/24/16

Summary of this

this : A reference to the current instance of a given
class

using this:
a To refer to an instance variable:
this.variable

o To call a method:
this.method (parameters) ;

o To call a constructor from another constructor:
this (parameters) ;

Example of using this

public class MyThisTest {
private int a;
public MyThisTest() {
this(42);
}
public MyThisTest(int a) {
this.a = a;
}
public void someSomething() {
int a = 1;
System.out.println(a);
System.out.println(this.a);
System.out.println(this);
}
public String toString() {
return "MyThisTest a=" + a; // refers to the instance variable a
}
¥

The implicit parameter

o During the call die.ro11 (),
the object referred to by die is the implicit parameter to
the method.

o The method int ro11() isreally int roll(Die this)

o Thecalldie.roll () istranslatedto roll (die)

Method overloading

Can you write different methods that have the same
name?

Yes!

System.out.println

("I can handle strings”);
System.out.println(2 + 2);
System.out.println(3.14);
System.out.println(object);

Math.max (10, 15);
Math.max (10.0, 15.0);

// returns integer

// returns double

Useful when you need to perform the same operation on different
kinds of data.

11

1/24/16

Method overloading

public int sum(int numl, int num2) {
return numl + num2;
}
public int sum(int numl, int num2, int num3) {

return numl + num2 + num3;

A method’s name + number, type, and order of its
parameters: method signature

The compiler uses a method’s signature to bind a method
invocation to the appropriate definition

The return value is not part of the
signature

You cannot overload on the basis of the return

type (because it can be ignored)

Example of invalid overloading:

public int convert (int value) {

return 2 * value;
}

public double convert (int value) {

return 2.54 * value;

Example

Consider the class Pet

class Pet {
private String name;
private int age;
private double weight;

Example (cont)
public Pet ()

public Pet(String name, int age, double weight)
public Pet (int age)

public Pet (double weight)

Suppose you have a horse that weighs 750 pounds; you use:
Pet myHorse = new Pet(750.0);

but what happens if you do:

Pet myHorse = new Pet(750); ?

12

1/24/16

Primitive Equality

Suppose we have two integers i and j
How does the statement i==7 behave?
i==7 if 1 and j contain the same value

Object Equality
Suppose we have two pet instances pet1

and pet?2

How does the statement pet1==pet2
behave?

Object Equality
Suppose we have two pet instances pet1

and pet?2

How does the statement pet1==pet2
behave?

petl==pet2 is true if both refer to the same
object

The == operator checks if the addresses of
the two objects are equal

May not be what we want!

Object Equality

Consider the following lines of code:
String s1 = new String(“Java”);
String s2 = new String(“Java”);

Is s1==s2 True?

a) Yes b) No

13

1/24/16

.equals for the Pet class

public boolean equals (Object other) {
if (! (other instanceof Pet)) {
return false;
}
Pet otherPet = (Pet) other;
return ((this.age == otherPet.age)
&& (Math.abs (this.weight - otherPet.weight) < le-8)
&& (this.name.equals (otherPet.name))) ;
}

This is not explained correctly in the book (section 5.3)!!

Naming things
Computer programs are written to be read by
humans and only incidentally by computers.

Use names that convey meaning

Loop indices are often a single character (i, j,
k), but others should be more informative.
Importance of a name depends on its scope:
Names with a “short life” need not be as
informative as those with a “long life”

Read code and see how others do it

14

