

Motivation

- Show that any postage of ≥ 8¢ can be obtained using 3¢ and 5¢ stamps.
- First check for a few values:
 - 8 = 3 + 5
 - 9¢ = 3¢ + 3¢ + 3¢
 - $10^{\ }=5^{\ }+5^{\ }$
 - 11 = 5¢ + 3¢ + 3¢
 - 12c = 3c + 3c + 3c + 3c
- How to generalize this?

Motivation

Let n be a positive integer. Show that every 2ⁿ x 2ⁿ chessboard with one square removed can be tiled using triominoes, each covering three squares at a time.

Motivation

Prove that for every positive value of n, 1 + 2 + ,..., + n = n(n + 1)/2.

Motivation

- Many mathematical statements have the form: $\forall n \in N, P(n)$ P(n): Logical predicate
- Example: For every positive value of n, $1 + 2 + \dots + n = n(n + 1)/2$.
- Predicate propositional function that depends on a variable, and has a truth value once the variable is assigned a value.
- Mathematical induction is a proof technique for proving such statements

Proving P(3)

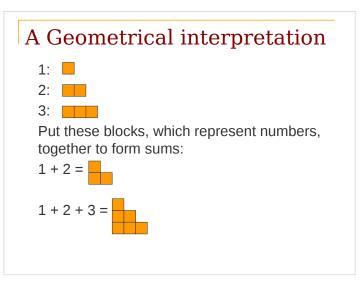
- Suppose we know: P(1) and P(n) \rightarrow P(n + 1) $\forall n \ge 1$. Prove: P(3)
- Proof:1. P(1).[premise]2. $P(1) \rightarrow P(2)$.[specialization of premise]3. P(2).[step 1, 2, & modus ponens]4. $P(2) \rightarrow P(3)$.[specialization of premise]5. P(3).[step 3, 4, & modus ponens]

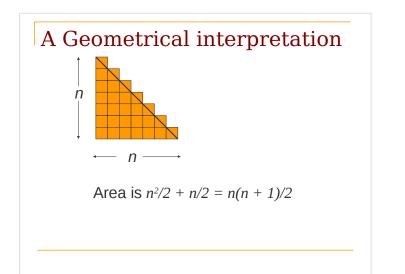
- We can construct a proof for every finite value of n
- Modus ponens: if p and $p \rightarrow q$ then q

Example: 1 + 2 + ... + n = n(n + 1)/2.

- P(n): 1+2+...+n = n(n+1)/2
- Prove: P(n=1): 1 =? 1(1 + 1)/2 = 1.
- Assume: P(n=k) is true 1+2+...+k= k(k + 1)/2
 This is called the *Inductive Hypothesis*
- Use that assumption to prove P(n=k+1) is true. 1+2+...+k+k+1 =? (k + 1)(k + 2)/2. (1+2+...+k) + k+1 =? (k+1)(k+2)/2

 $\begin{aligned} k(k+1)/2 + k+1 &=? (k+1)(k+2)/2 \text{ [by Ind. Hyp.]} \\ k(k+1)/2 + 2(k+1)/2 &=? (k+1)(k+2)/2 \\ (k^2+k+2k+2)/2 &=? (k+1)(k+2)/2 \\ (k^2+k+2k+2)/2 &= (k^2+k+2k+2)/2 \end{aligned}$





The Principle of Mathematical Induction

- Let P(n) be a statement that, for each natural number n, is either true or false.
- To prove that ∀n∈N, P(n), it suffices to prove:
 P(n=1) is true. (or sometimes some other n) (base case)
 - □ $\forall n \in N, P(n) \rightarrow P(n + 1)$. (inductive step)
- This is not magic.
- It is a recipe for constructing a proof for an arbitrary n∈N.

Mathematical Induction and the Domino Principle

the 1st domino falls over

and

the *n*th domino falls over implies that domino (n + 1) falls over

then

domino *n* falls over for all $n \in \mathbf{N}$.

image from http://en.wikipedia.org/wiki/File:Dominoeffect.png

Proof by induction

- 3 steps:
 - Prove P(n=1). [the basis]
 - Assume P(n=k) [the induction hypothesis]
 - Using P(n=k), prove P(n=k+1) [the inductive step]

Example

Show that any postage of ≥ 8¢ can be obtained using 3¢ and 5¢ stamps.

3¢

First check for a few values:

$$8¢ = 3¢ + 5¢$$

$$9¢ = 3¢ + 3¢ + 3¢$$

$$10¢ = 5¢ + 5¢$$

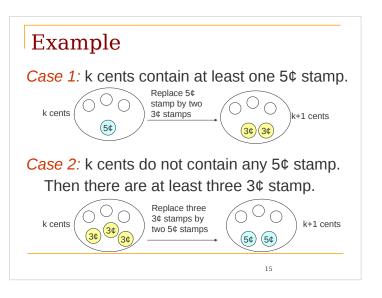
$$11¢ = 5¢ + 3¢ + 3¢$$

$$12¢ = 3¢ + 3¢ + 3¢ + 3$$

How to generalize this?

Example

- Let P(n) be the statement "n cents postage can be obtained using 3¢ and 5¢ stamps".
- Want to show that "P(n=k) is true" implies "P(n=k+1) is true" for all k ≥ 8.
- How can you increase k by 1?
 - 2 cases:
 1) P(k) is true and the k cents contain at least one 5¢.
 - P(k) is true and the k cents do not contain any 5¢.



Examples

- Show that $1 + 2 + 2^2 + ... + 2^n = 2^{n+1} 1$
- Show that for $n \ge 4 2^n < n!$
- Show that n³-n is divisible by 3 for every positive n.
- Show that 1 + 3 + 5 + ... + (2n+1) = (n+1)²
- Prove that a set with n elements has 2ⁿ subsets

All horses have the same color

- Base case: If there is only one horse, there is only one color.
- Induction step: Assume as induction hypothesis that within any set of n horses, there is only one color. Now look at any set of n + 1 horses. Number them: 1, 2, 3, ..., n, n + 1. Consider the sets {1, 2, 3, ..., n} and {2, 3, 4, ..., n + 1}. Each is a set of only n horses, therefore within each there is only one color. But the two sets overlap, so there must be only one color among all n + 1 horses.
- This is clearly wrong, but can you find the flaw?

All horses have the same color

- The inductive step requires that k >= 2, otherwise there is no intersection! So P(2) should be the base case, which is obviously incorrect.
- In the book there is a similar example.

More induction examples

Let n be a positive integer. Show that every 2ⁿ x 2ⁿ chessboard with one square removed can be tiled using triominoes, each covering three squares at a time.

Odd Pie Fights

An odd number of people stand at mutually distinct distances. Each person throws a pie at their nearest neighbor. Show that there is at least one survivor.

http://laughingsquid.com/san-francisco-pie-fight-at-the-powellstreet-cable-car-turnaround/

Strong induction

Induction:

- P(n=1) is true.
- □ $\forall k \in N$, P(n=k) \rightarrow P(n=k+1).
- □ Implies $\forall k \in N$, P(n=k)
- Strong induction:
 - P(n=1) is true.
 - □ $\forall k \in N$, (P(n=1) \land P(n=2) $\land ... \land$ P(n=k)) \rightarrow P(n=k+1)
 - □ Implies $\forall k \in N$, P(n=k) is true.

Example

- Prove that all natural numbers ≥ 2 can be represented as a product of primes.
- Basis: 2: 2 is a prime.
- Assume that 1, 2,..., n can be represented as a product of primes.

Example

- Show that n+1 can be represented as a product of primes.
 - If n+1 is a prime: It can be represented as a product of 1 prime, itself.
 - If n+1 is composite: Then, n + 1 = ab, for some a,b < n + 1.</p>

Therefore, $a = p_1 p_2 \dots p_k \& b = q_1 q_2 \dots q_l$, where all p_i and q_i are primes.

Represent $n+1 = p_1p_2 \dots p_kq_1q_2 \dots q_l$ which is a product of primes!

Breaking chocolate

Theorem: Breaking up a chocolate bar with n "squares" takes n-1 breaks.

Induction and Recursion

Induction is useful for proving correctness of recursive algorithms

```
Example
// Returns base ^ exponent.
// Precondition: exponent >= 0
public static int pow(int x, int n) {
    if (n == 0) {
        // base case; any number to 0th power is 1
        return 1;
    } else {
        // recursive case: x^n = x * x^(n-1)
        return x * pow(x, n-1);
    }
}
```

Induction and Recursion

```
public static int pow(int x, int n) {
    if (n == 0){
        return 1;
    } else {
        return x * pow(x, n-1);
    }
}
Claim: the algorithm correctly computes x<sup>n</sup>.
Proof: By induction on n
Base case: n = 0: it correctly returns 1
Inductive step: assume that for n the algorithm correctly
    returns x<sup>n</sup>.
Then for n+1 it returns x x<sup>n</sup> = x<sup>n+1</sup>.
```

Induction and Recursion

n! of some integer n can be characterized as:
 n! = 1 for n = 0; otherwise

```
n! = n (n - 1) (n - 2) ... 1
```

- Want to write a recursive method for computing it. We notice that n! = n (n 1)!
- This is all we need to put together the method:

```
public static int factorial(int n) {
    if (n == 0) {
        return 1;
    } else {
        return n * factorial(n-1);
    }
}
```

Induction in CS

 Induction is a powerful tool for showing algorithm correctness – not just for recursive algorithms (CS320)