
More Recursion!

http://xkcd.com/688/

http://xkcd.com/981/

Recursion - examples

 Problem: given a string as input, return the
string with characters reversed.

 Base case?
 Recursion

Tail recursion
 Tail recursion is a recursive call that occurs as

the last action in a method.
 This is not tail recursion:
public int factorial(int n){
 if (n==0)
 return 1;
 return n * factorial(n-1);
}

 How can we make the call to factorial the last
thing?

Tail recursion
 Tail recursion is a recursive call that occurs as

the last action in a method.
 This is not tail recursion:
public int factorial(int n){
 if (n==0)
 return 1;
 return n * factorial(n-1);
}

 How can we make the call to factorial the last
thing?

 Yep! Must use * in a new argument.

Tail recursion

 Non tail-recursive:
 public int factorial(int n){

 if (n == 0)

 return 1;

 return n * factorial(n-1);

 }

 Tail-recursive:
 public int factorial(int n, int product) {

 if (n == 0)
 return product;
 return factorial(n-1, n * product);
 }

Tail recursion

 Let's hide this additional argument:
 public int factorial(int n) {
 return factorialTail(n, 1);
 }
 private int factorialTail(int n, int product) {
 if(n == 0)
 return product;
 return factorialTail(n-1, n * product);
 }
 But why would you care? Compilers can optimize

memory usage when they detect tail recursion. When
making a recursive call, you no longer need to save the
information about the local variables within the calling
method.

Dictionary lookup

 Suppose you’re looking up a word in the
dictionary (paper one, not online!)

 You probably won’t scan linearly through the
pages – inefficient.

 What would be your strategy?

Binary search
binarySearch(dictionary, word){

// base case
 ????

else {// recursive case

 open the dictionary to a point near the middle
 determine which half of the dictionary contains word

 if (word is in first half of the dictionary) {
binarySearch(first half of dictionary, word)

 }
 else {

binarySearch(second half of dictionary, word)
 }

}

Binary search
binarySearch(dictionary, word){

if (dictionary has one page) {// base case
 scan the page for word

}

else {// recursive case

 open the dictionary to a point near the middle
 determine which half of the dictionary contains word

 if (word is in first half of the dictionary) {
binarySearch(first half of dictionary, word)

 }
 else {

binarySearch(second half of dictionary, word)
 }

}

Binary search
 Let’s write a method called binarySearch that

accepts a sorted array of integers and a target
integer and returns the index of an occurrence of
that value in the array.
 If the target value is not found, return -1

int index = binarySearch(data, 42); // 10
int index2 = binarySearch(data, 66); // -1

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value -
4

2 7 10 15 20 22 25 30 36 42 50 56 68 85 92

Binary search
index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92

 How can we implement this?

– Create two smaller arrays?

– Pass start and end indicies?

Binary search
// Precondition: a is sorted

// Postcondition: Returns the index of an occurrence of the given value, or -1.

public int binarySearch(int[] a, int target) {

 return binarySearch(a, target, 0, a.length - 1);

}

// Recursive helper to implement search.

private int binarySearch(int[] a, int target, int first, int last) {

 if (first > last) {

 return -1; // not found

 } else {

 int mid = (first + last) / 2;

 if (a[mid] == target) {

 return mid;

 } else if (a[mid] < target) {

 return binarySearch(a, target, mid+1, last);

 } else {

 return binarySearch(a, target, first, mid-1);

 }

 }

}

13

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

Try to find the pattern by cases

 One disk is easy

 Two disks...

 Three disks...

 Four disk...

15

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

16

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

17

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

18

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

 Let's go play with it at:
https://www.mathsisfun.com/games/towerofhanoi.html
https://www.youtube.com/watch?v=4_KtPENqCb0

Fibonacci’s Rabbits

 Suppose a newly-born pair of
rabbits, one male, one female, are
put on an island.
 A pair of rabbits doesn’t breed until 2 months

old.
 Thereafter each pair produces another pair

each month
 Rabbits never die.

 How many pairs will there be after n
months?

19
image from: http://www.jimloy.com/algebra/fibo.htm

Fibonacci numbers

 The Fibonacci numbers are a sequence of
numbers F0, F1, ... Fn defined by:

 F0 = F1 = 1

 Fi = Fi-1 + Fi-2 for any i > 1

 Write a method that, when given an integer i,
computes the nth Fibonacci number.

Fibonacci numbers
 Let's run it for n = 1,2,3,... 10, ... , 20,...
 If n is large the computation takes a long time! Why?

F5

F3

F2

F0

F1

F4

F1

F3

F2

F0

F1

F1

F2

F0F1

22

Fibonacci numbers
 recursive Fibonacci was expensive because it

made many, recursive calls

 fibonacci(n) recomputed fibonacci(n-1),…,fibonacci(1)
many times in finding its answer!

 This is a case where the sub-tasks handled by the
recursion are redundant with each other and get
recomputed

Fibonacci numbers
 Every time n is incremented by 2, the call tree more than

doubles.

F5

F3

F2

F0

F1

F4

F1

F3

F2

F0

F1

F1

F2

F0F1

Growth of rabbit population

1 1 2 3 5 8 13 21 34 ...

The fibonacci numbers themselves also grow
rapidly: every 2 months the population at
least DOUBLES

Fractals – the Koch curve
and Sierpinski Triangle

