
More Recursion!

http://xkcd.com/688/

http://xkcd.com/981/

Recursion - examples

 Problem: given a string as input, return the
string with characters reversed.

 Base case?
 Recursion

Tail recursion
 Tail recursion is a recursive call that occurs as

the last action in a method.
 This is not tail recursion:
public int factorial(int n){
 if (n==0)
 return 1;
 return n * factorial(n-1);
}

 How can we make the call to factorial the last
thing?

Tail recursion
 Tail recursion is a recursive call that occurs as

the last action in a method.
 This is not tail recursion:
public int factorial(int n){
 if (n==0)
 return 1;
 return n * factorial(n-1);
}

 How can we make the call to factorial the last
thing?

 Yep! Must use * in a new argument.

Tail recursion

 Non tail-recursive:
 public int factorial(int n){

 if (n == 0)

 return 1;

 return n * factorial(n-1);

 }

 Tail-recursive:
 public int factorial(int n, int product) {

 if (n == 0)
 return product;
 return factorial(n-1, n * product);
 }

Tail recursion

 Let's hide this additional argument:
 public int factorial(int n) {
 return factorialTail(n, 1);
 }
 private int factorialTail(int n, int product) {
 if(n == 0)
 return product;
 return factorialTail(n-1, n * product);
 }
 But why would you care? Compilers can optimize

memory usage when they detect tail recursion. When
making a recursive call, you no longer need to save the
information about the local variables within the calling
method.

Dictionary lookup

 Suppose you’re looking up a word in the
dictionary (paper one, not online!)

 You probably won’t scan linearly through the
pages – inefficient.

 What would be your strategy?

Binary search
binarySearch(dictionary, word){

// base case
 ????

else {// recursive case

 open the dictionary to a point near the middle
 determine which half of the dictionary contains word

 if (word is in first half of the dictionary) {
binarySearch(first half of dictionary, word)

 }
 else {

binarySearch(second half of dictionary, word)
 }

}

Binary search
binarySearch(dictionary, word){

if (dictionary has one page) {// base case
 scan the page for word

}

else {// recursive case

 open the dictionary to a point near the middle
 determine which half of the dictionary contains word

 if (word is in first half of the dictionary) {
binarySearch(first half of dictionary, word)

 }
 else {

binarySearch(second half of dictionary, word)
 }

}

Binary search
 Let’s write a method called binarySearch that

accepts a sorted array of integers and a target
integer and returns the index of an occurrence of
that value in the array.
 If the target value is not found, return -1

int index = binarySearch(data, 42); // 10
int index2 = binarySearch(data, 66); // -1

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value -
4

2 7 10 15 20 22 25 30 36 42 50 56 68 85 92

Binary search
index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92

 How can we implement this?

– Create two smaller arrays?

– Pass start and end indicies?

Binary search
// Precondition: a is sorted

// Postcondition: Returns the index of an occurrence of the given value, or -1.

public int binarySearch(int[] a, int target) {

 return binarySearch(a, target, 0, a.length - 1);

}

// Recursive helper to implement search.

private int binarySearch(int[] a, int target, int first, int last) {

 if (first > last) {

 return -1; // not found

 } else {

 int mid = (first + last) / 2;

 if (a[mid] == target) {

 return mid;

 } else if (a[mid] < target) {

 return binarySearch(a, target, mid+1, last);

 } else {

 return binarySearch(a, target, first, mid-1);

 }

 }

}

13

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

Try to find the pattern by cases

 One disk is easy

 Two disks...

 Three disks...

 Four disk...

15

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

16

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

17

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

18

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

 Let's go play with it at:
https://www.mathsisfun.com/games/towerofhanoi.html
https://www.youtube.com/watch?v=4_KtPENqCb0

Fibonacci’s Rabbits

 Suppose a newly-born pair of
rabbits, one male, one female, are
put on an island.
 A pair of rabbits doesn’t breed until 2 months

old.
 Thereafter each pair produces another pair

each month
 Rabbits never die.

 How many pairs will there be after n
months?

19
image from: http://www.jimloy.com/algebra/fibo.htm

Fibonacci numbers

 The Fibonacci numbers are a sequence of
numbers F0, F1, ... Fn defined by:

 F0 = F1 = 1

 Fi = Fi-1 + Fi-2 for any i > 1

 Write a method that, when given an integer i,
computes the nth Fibonacci number.

Fibonacci numbers
 Let's run it for n = 1,2,3,... 10, ... , 20,...
 If n is large the computation takes a long time! Why?

F5

F3

F2

F0

F1

F4

F1

F3

F2

F0

F1

F1

F2

F0F1

22

Fibonacci numbers
 recursive Fibonacci was expensive because it

made many, recursive calls

 fibonacci(n) recomputed fibonacci(n-1),…,fibonacci(1)
many times in finding its answer!

 This is a case where the sub-tasks handled by the
recursion are redundant with each other and get
recomputed

Fibonacci numbers
 Every time n is incremented by 2, the call tree more than

doubles.

F5

F3

F2

F0

F1

F4

F1

F3

F2

F0

F1

F1

F2

F0F1

Growth of rabbit population

1 1 2 3 5 8 13 21 34 ...

The fibonacci numbers themselves also grow
rapidly: every 2 months the population at
least DOUBLES

Fractals – the Koch curve
and Sierpinski Triangle

