
More Recursion!
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Recursion - examples

 Problem:  given a string as input, return the 
string with characters reversed.

 Base case?
 Recursion

Tail recursion
 Tail recursion is a recursive call that occurs as 

the last action in a method.
 This is not tail recursion:
public int factorial(int n){
   if (n==0)
      return 1;
   return n * factorial(n-1);
}

 How can we make the call to factorial the last 
thing?

Tail recursion
 Tail recursion is a recursive call that occurs as 

the last action in a method.
 This is not tail recursion:
public int factorial(int n){
   if (n==0)
      return 1;
   return n * factorial(n-1);
}

 How can we make the call to factorial the last 
thing?

 Yep!  Must use * in a new argument.



Tail recursion

 Non tail-recursive:
    public int factorial(int n){

     if (n == 0)

        return 1;

     return n * factorial(n-1);

  }

 Tail-recursive:
  public int factorial(int n, int product) {

       if (n == 0)
          return product;
       return factorial(n-1, n * product);
    }

Tail recursion

 Let's hide this additional argument:
    public int factorial(int n) {
       return factorialTail(n, 1);
    }
    private int factorialTail(int n, int product) {
        if(n == 0)
            return product;
        return factorialTail(n-1, n * product);
    }
 But why would you care?  Compilers can optimize 

memory usage when they detect tail recursion. When 
making a recursive call, you no longer need to save the 
information about the local variables within the calling 
method.

Dictionary lookup

 Suppose you’re looking up a word in the 
dictionary (paper one, not online!)

 You probably won’t scan linearly through the 
pages – inefficient.

 What would be your strategy?

Binary search
binarySearch(dictionary,  word){

// base case
     ????

else {// recursive case

  open the dictionary to a point near the middle
  determine which half of the dictionary contains word

  if (word is in first half of the dictionary) {
binarySearch(first half of dictionary, word)

  }
  else {

binarySearch(second half of dictionary, word)
  }

}  
        



Binary search
binarySearch(dictionary,  word){

if (dictionary has one page) {// base case
  scan the page for word

}

else {// recursive case

  open the dictionary to a point near the middle
  determine which half of the dictionary contains word

  if (word is in first half of the dictionary) {
binarySearch(first half of dictionary, word)

  }
  else {

binarySearch(second half of dictionary, word)
  }

}  
        

Binary search
 Let’s write a method called binarySearch that 

accepts a sorted array of integers and a target 
integer and returns the index of an occurrence of 
that value in the array.
 If the target value is not found, return -1

int index  = binarySearch(data, 42);  // 10
int index2 = binarySearch(data, 66);  // -1

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value -
4

2 7 10 15 20 22 25 30 36 42 50 56 68 85 92

Binary search
index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92

 How can we implement this?

– Create two smaller arrays?

– Pass start and end indicies?

Binary search
// Precondition: a is sorted

// Postcondition: Returns the index of an occurrence of the given value, or -1.

public int binarySearch(int[] a, int target) {

    return binarySearch(a, target, 0, a.length - 1);

}

// Recursive helper to implement search.

private int binarySearch(int[] a, int target, int first, int last) {

    if (first > last) {

        return -1;   // not found

    } else {

        int mid = (first + last) / 2;

        if (a[mid] == target) {

            return mid; 

  

        } else if (a[mid] < target) {

            return binarySearch(a, target, mid+1, last);

        } else {  

            return binarySearch(a, target, first, mid-1);

        }

    }

}



13

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without 
ever placing a larger disk on a smaller one.

Try to find the pattern by cases

 One disk is easy

 Two disks...

 Three disks...

 Four disk...
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Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without 
ever placing a larger disk on a smaller one.
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Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without 
ever placing a larger disk on a smaller one.
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Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without 
ever placing a larger disk on a smaller one.
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Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without 
ever placing a larger disk on a smaller one.

                              
 Let's go play with it at:    
https://www.mathsisfun.com/games/towerofhanoi.html
https://www.youtube.com/watch?v=4_KtPENqCb0

Fibonacci’s Rabbits

 Suppose a newly-born pair of 
rabbits, one male, one female, are 
put on an island. 
 A pair of rabbits doesn’t breed until 2 months 

old.  
 Thereafter each pair produces another pair 

each month
 Rabbits never die. 

 How many pairs will there be after n 
months?
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Fibonacci numbers

 The Fibonacci numbers are a sequence of 
numbers F0, F1, ... Fn defined by:

       F0 = F1 = 1

       Fi = Fi-1 + Fi-2 for any i > 1

 Write a method that, when given an integer i, 
computes the nth Fibonacci number.



Fibonacci numbers
 Let's run it for n = 1,2,3,... 10, ... , 20,...
 If n is large the computation takes a long time!  Why?
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Fibonacci numbers
 recursive Fibonacci was expensive because it 

made many, recursive calls

 fibonacci(n) recomputed fibonacci(n-1),…,fibonacci(1) 
many times in finding its answer!

 This is a case where the sub-tasks handled by the 
recursion are redundant with each other and get 
recomputed

Fibonacci numbers
 Every time n is incremented by 2, the call tree more than 

doubles.  
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Growth of rabbit population

1 1 2 3 5 8 13 21 34 ...

The fibonacci numbers themselves also grow 
rapidly:  every 2 months the population at 
least DOUBLES



Fractals – the Koch curve 
and Sierpinski Triangle


