
6/30/15	

1	

Recursion

Chapter 5.4 in Rosen
Chapter 11 in Savitch

What does this method do?

/**
* precondition n>0
* postcondition ??
*/
private void printStars(int n) {
 if (n == 1) {
 System.out.println("*");

 } else {
 System.out.print("*");

 printStars(n - 1);
 }
}

Recursion

n  recursion: The definition of an operation in terms
of itself.
q  Solving a problem using recursion depends on solving

smaller occurrences of the same problem.

n  recursive programming: Writing methods that
call themselves
q  directly or indirectly
q  An equally powerful substitute for iteration (loops)
q  But sometimes much more suitable for the problem

Definition of recursion

 recursion: n.
See recursion.

6/30/15	

2	

Recursive Acronyms

http://search.dilbert.com/comic/Ttp

Dilbert: Wally, would you like to be on my TTP project?
Wally: What does "TTP" stand for?
Dilbert: It's short for The TTP Project. I named it myself.
— Dilbert, May 18, 1994

GNU — GNU's Not Unix
KDE — KDE Desktop Environment
PHP - PHP: Hypertext Preprocessor
PNG — PNG's Not GIF (officially "Portable Network Graphics")
RPM — RPM Package Manager (originally "Red Hat Package
Manager")

Why learn recursion?

n  A different way of thinking about problems
n  Can solve some problems better than

iteration
n  Leads to elegant, simple, concise code

(when used well)
n  Some programming languages ("functional"

languages such as Scheme, ML, and
Haskell) use recursion exclusively (no loops)

Exercise

n  (To a student in the front row)
How many students are directly behind you?
q  We all have poor vision, and can

only see the people right next to us.
So you can't just look back and count.

q  But you are allowed to ask
questions of the person behind you.

q  How can we solve this problem?
(recursively)

The idea

n  Recursion is all about breaking a big problem
into smaller occurrences of that same problem.

q  Each person can solve a small part of the problem.
n  What is a small version of the problem that would be easy to

answer?
n  What information from

 a neighbor might help
 you?

6/30/15	

3	

Recursive algorithm

n  Number of people behind me:
q  If there is someone behind me,

ask him/her how many people are behind him/her.
n  When they respond with a value N, then I will answer N + 1.

q  If there is nobody behind me, I will answer 0.

Recursive structures

n  A directory has
q  files
and
q  (sub) directories

n  An expression has
q  operators
q  operands, which are

n  variables
n  constants
n  (sub) expressions

Expressions represented by trees

n  A tree is

q  a node
with
q  zero or more sub

trees
examples:
 a*b + c*d
 (a+b)*(c+d)

+
* *

a b c d

*
+ +

a b c d

Structure of recursion

n  Each of these examples has
q  recursive parts (directory, expression, tree)
q  non recursive parts (file, variables, nodes)

n  Would we always need non recursive parts?

n  Same goes for recursive algorithms.

6/30/15	

4	

Cases

n  Every recursive algorithm has at least 2 cases:

q  base case: A simple instance that can be answered
directly.

q  recursive case: A more complex instance of the
problem that cannot be directly answered, but can
instead be described in terms of smaller instances.

q  Can have more than one base or recursive case, but all
have at least one of each.

q  A crucial part of recursive programming is identifying
these cases.

Base and Recursive Cases: Example

public void printStars(int n) {
 if (n == 1) {
 // base case; print one star
 System.out.println("*");
 } else {
 // recursive case; print one more star
 System.out.print("*");
 printStars(n - 1);
 }
}

Recursion Zen

n  An even simpler, base case is n=0:

public void printStars(int n) {
 if (n == 0) {
 // base case; end the line of output
 System.out.println();
 } else {
 // recursive case; print one more star
 System.out.print("*");
 printStars(n - 1);
 }
}

q  Recursion Zen: The art of identifying the best set
of cases for a recursive algorithm and expressing
them elegantly.

Everything recursive can be done non-
recursively

// Prints a line containing a given number of stars.
// Precondition: n >= 0
public void printStars(int n) {
 for (int i = 0; i < n; i++) {
 System.out.print("*");
 }
 System.out.println();
}

6/30/15	

5	

Exercise

n  Write a method reverseLines that accepts a file
Scanner prints to System.out the lines of the file in
reverse order.

q  Write the method recursively and without using loops.

q  Example input: Expected output:

 this no?

 is fun
 fun is

 no? this

q  What are the cases to consider?

n  How can we solve a small part of the problem at a time?
n  What is a file that is very easy to reverse?

Reversal pseudocode

n  Reversing the lines of a file:
q  Read a line L from the file.
q  Print the rest of the lines in reverse order.
q  Print the line L.

n  If only we had a way to reverse the rest of the lines of the
file....

Reversal solution
public void reverseLines(Scanner input) {
 if (input.hasNextLine()) {
 // recursive case
 String line = input.nextLine();
 reverseLines(input);
 System.out.println(line);
 }
}

q  Where is the base case?

input file: output:
this
is
fun
no?

no?
fun
is
this

Tracing our algorithm
(Show reverseLines.java)
n  call stack: The method invocations running

at any one time.

 reverseLines(new
Scanner("poem.txt"));

public void reverseLines(Scanner input) {
 if (input.hasNextLine()) {
 String line = input.nextLine(); // ”this"
 reverseLines(input);
 System.out.println(line);
 }
}

public void reverseLines(Scanner input) {
 if (input.hasNextLine()) {
 String line = input.nextLine(); // ”is"
 reverseLines(input);
 System.out.println(line);
 }
}

public void reverseLines(Scanner input) {
 if (input.hasNextLine()) {
 String line = input.nextLine(); // ”fun"
 reverseLines(input);
 System.out.println(line);
 }
}

public void reverseLines(Scanner input) {
 if (input.hasNextLine()) {
 String line = input.nextLine(); // ”no?"
 reverseLines(input);
 System.out.println(line);
 }
}

public void reverseLines(Scanner input) {
 if (input.hasNextLine()) { // false
 ...
 }
}

6/30/15	

6	

21

Recursive power example

n  Write a method that computes xn.
 xn = x * x * x * ... * x (n times)

n  An iterative solution:
public int pow(int x, int n) {
 int product = 1;
 for (int i = 0; i < n; i++) {
 product = product * x;
 }
 return product;
}

Exercise solution
// Returns base ^ exponent.
// Precondition: exponent >= 0
public int pow(int x, int n) {
 if (n == 0) {
 // base case; any number to 0th power is 1
 return 1;
 } else {
 // recursive case: x^n = x * x^(n-1)
 return x * pow(x, n-1);
 }
}

23

How recursion works

n  Each call sets up a new instance of all the
parameters and the local variables

n  When the method completes, control returns to
the method that invoked it (which might be
another invocation of the same method)

pow(4, 3) = 4 * pow(4, 2)
 = 4 * 4 * pow(4, 1)
 = 4 * 4 * 4 * pow(4, 0)
 = 4 * 4 * 4 * 1
 = 64

24

Infinite recursion
n  A method with a missing or badly written base

case can causes infinite recursion

public int pow(int x, int y) {
 return x * pow(x, y - 1); // Oops! No base case
}

pow(4, 3) = 4 * pow(4, 2)
 = 4 * 4 * pow(4, 1)
 = 4 * 4 * 4 * pow(4, 0)
 = 4 * 4 * 4 * 4 * pow(4, -1)
 = 4 * 4 * 4 * 4 * 4 * pow(4, -2)
 = ... crashes: Stack Overflow Error!

6/30/15	

7	

An optimization

n  Notice the following mathematical property:

q  How does this "trick" work?
q  Do you recognize it?
q  How can we incorporate this optimization into our
pow method?

q  What is the benefit of this trick?
q  Go write it.

312 = (32)6 = (9)6 = (92)3 = (81)3 = 81*(81)2

Exercise solution 2
// Returns base ^ exponent.
// Precondition: exponent >= 0
public int pow(int base, int exponent) {
 if (exponent == 0) {
 // base case; any number to 0th power is 1
 return 1;
 } else if (exponent % 2 == 0) {
 // recursive case 1: x^y = (x^2)^(y/2)
 return pow(base * base, exponent / 2);
 } else {
 // recursive case 2: x^y = x * x^(y-1)
 return base * pow(base, exponent - 1);
 }
}

27

Activation records
n  Activation record: memory that Java allocates to store

information about each running method
q  return point ("RP"), argument values, local variables
q  Java stacks up the records as methods are called; a method's

activation record exists until it returns
q  Eclipse debug draws the act. records and helps us trace the

behavior of a recursive method

 _
| x = [4] n = [0] | pow(4, 0)
| RP = [pow(4,1)] |
| x = [4] n = [1] | pow(4, 1)
| RP = [pow(4,2)] |
| x = [4] n = [2] | pow(4, 2)
| RP = [pow(4,3)] |
| x = [4] n = [3] | pow(4, 3)
| RP = [main] |
| | main

More Recursion!

http://xkcd.com/688/

http://xkcd.com/981/

6/30/15	

8	

Recursion - examples

n  Problem: given a string as input, write it
backward

n  Base case?
n  Recursion

What questions to ask?

n  What is a good base case? Perhaps more than
one.

n  What is the recursive case? Perhaps more than
one
q  What are the sub-problems in the recursive case?
q  How are the answers to the sub-problems

combined?

What questions to ask?

n  Is a helper method needed?
q  With arrays, you may need extra parameter(s) to

track the index
q  If you have to return an array, it may be easier to

pass a result array of the required size and fill it
recursively.

Tail recursion

n  Tail recursion is a recursive call that occurs as
the last action in a method.

n  This is not tail recursion:
public int factorial(int n){

 if (n==0)
 return 1;
 return n* factorial(n-1);
}

6/30/15	

9	

Tail recursion

n  This is tail recursion:
public int factorial(int n) {

 return factorialTail(n, 1);
}

int factorialTail(int n, int product) {
 if(n == 0)
 return product;
 return factorialTail(n-1, product*n);
}

Tail recursion

n  This is tail recursion:
public int factorial(int n) {

 return factorialTail(n, 1);
}

int factorialTail(int n, int product) {
 if(n == 0)
 return product;
 return factorialTail(n-1, product*n);
}

n  But why would you care? Turns out that compilers can
optimize memory usage when they detect that this is the
case.

Tail recursion

n  This is tail recursion:
public int factorial(int n) {

 return factorialTail(n, 1);
}

int factorialTail(int n, int product) {
 if(n == 0)
 return product;
 return factorialTail(n-1, product*n);
}

n  When making a recursive call, you no longer need to
save the information about the local variables within the
calling method.

Fractals – the Koch curve and
Sierpinski Triangle

6/30/15	

10	

Dictionary lookup

n  Suppose you’re looking up a word in the
dictionary (paper one, not online!)

n  You probably won’t scan linearly thru the
pages – inefficient.

n  What would be your strategy?

Binary search
binarySearch(dictionary, word){

 if (dictionary has one page) {// base case
 scan the page for word
 }

 else {// recursive case

 open the dictionary to a point near the middle
 determine which half of the dictionary contains word

 if (word is in first half of the dictionary) {
 binarySearch(first half of dictionary, word)
 }
 else {
 binarySearch(second half of dictionary, word)
 }
 }

Binary search

n  Let’s write a method called binarySearch that
accepts a sorted array of integers and a target
integer and returns the index of an occurrence of
that value in the array.
q  If the target value is not found, return -1

int index = binarySearch(data, 42); // 10
int index2 = binarySearch(data, 66); // -1

index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
value -4 2 7 10 15 20 22 25 30 36 42 50 56 68 85 92 103

Binary search
// Returns the index of an occurrence of the given
// value in the given array, or -1 if not found.
// Precondition: a is sorted
public int binarySearch(int[] a, int target) {
 return binarySearch(a, target, 0, a.length - 1);
}
// Recursive helper to implement search.
private int binarySearch(int[] a, int target,
 int first, int last) {
 if (first > last) {
 return -1; // not found
 } else {
 int mid = (first + last) / 2;
 if (a[mid] == target) {
 return mid; // found it!
 } else if (a[mid] < target) {
 // middle element too small; search right half
 return binarySearch(a, target, mid+1, last);
 } else { // a[mid] > target
 // middle element too large; search left half
 return binarySearch(a, target, first, mid-1);
 }
 }
}

6/30/15	

11	

41

Towers of Hanoi

 Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

Try to find the pattern by cases

n  One disk is easy

n  Two disks...

n  Three disks...

n  Four disk...

43

Towers of Hanoi

 Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

44

Towers of Hanoi

 Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

6/30/15	

12	

45

Towers of Hanoi

 Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

46

Towers of Hanoi

 Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

 Let's go play with it at: http://www.mazeworks.com/hanoi/index.htm

Or http://www.mathsisfun.com/games/towerofhanoi.html

Fibonacci’s Rabbits

n  Suppose a newly-born pair of
rabbits, one male, one female, are
put on an island.
q  A pair of rabbits doesn’t breed until 2 months

old.
q  Thereafter each pair produces another pair

each month
q  Rabbits never die.

n  How many pairs will there be after n
months?

47
image from: http://www.jimloy.com/algebra/fibo.htm

Fibonacci numbers

n  The Fibonacci numbers are a sequence of
numbers F0, F1, ... Fn defined by:

 F0 = F1 = 1

 Fi = Fi-1 + Fi-2 for any i > 1

n  Write a method that, when given an integer i,
computes the nth Fibonacci number.

6/30/15	

13	

Fibonacci numbers

n  Let's run it for n = 1,2,3,... 10, ... , 20,...
n  If n is large the computation takes a long time! Why?

F5

F3

F2

F0

F1

F4

F1

F3

F2

F0

F1

F1

F2

F0 F1

50

Fibonacci numbers

n  recursive Fibonacci was expensive because it
made many, recursive calls

q  fibonacci(n) recomputed fibonacci(n-1),…,fibonacci(1)
many times in finding its answer!

q  this is a case, where the sub-tasks handled by the
recursion are redundant with each other and get
recomputed

Fibonacci numbers

n  Every time n is incremented by 2, the call tree more than
doubles.

F5

F3

F2

F0

F1

F4

F1

F3

F2

F0

F1

F1

F2

F0 F1

Growth of rabbit population

1 1 2 3 5 8 13 21 34 ...

 The fibonacci numbers themselves also grow
rapidly: every 2 months the population at
least DOUBLES

