6/30/15

Recursion

Chapter 5.4 in Rosen
Chapter 11 in Savitch

What does this method do? Dicste

/**
* precondition n>0
* postcondition 2?7
*/
private void printStars(int n) {
if (n == 1) {
System.out.println("*");
} else {
System.out.print ("*");
printStars(n - 1);

Recursion

recursion: The definition of an operation in terms
of itself.

o Solving a problem using recursion depends on solving
smaller occurrences of the same problem.

recursive programming: Writing methods that
call themselves

a directly or indirectly

o An equally powerful substitute for iteration (loops)

o But sometimes much more suitable for the problem

Definition of recursion

recursion: n.
See recursion.

6/30/15

Recursive Acronyms

WALLY, WOULD YOU LIKE T NAMED IT
10 BE ON MY “TTP* 3| IS swoRTFor | mvser
PROJECT? i| ™ TP progecT. |:f so, Do You
i i
) whaTooEs |4 5| SANTTO 10 RATHER
‘TTP” STAND |2 2 YU
FOR? : ARCH

\

© 1994 Uniod Fo

S Adarms 5yt

r[“é\\

GNU — GNU's Not Unix

)
&P NEMESLS
N
| S
KDE — KDE Desktop Environment

PHP - PHP: Hypertext Preprocessor

PNG — PNG's Not GIF (officially "Portable Network Graphics")

RPM — RPM Package Manager (originally "Red Hat Package
Manager")

http://search.dilbert.com/comic/Ttp

Why learn recursion?

A different way of thinking about problems
Can solve some problems better than
iteration

Leads to elegant, simple, concise code
(when used well)

Some programming languages ("functional”
languages such as Scheme, ML, and
Haskell) use recursion exclusively (no loops)

Exercise

(To a student in the front row)
How many students are directly behind you?

o We all have poor vision, and can
only see the people right next to us.

. [H l in this cols 1?|
So you can't just look back and count.
o But you are allowed to ask il
questions of the person behind you.

o How can we solve this problem?
(recursively)

The idea

Recursion is all about breaking a big problem
into smaller occurrences of that same problem.

o Each person can solve a small part of the problem.
What is a small version of the problem that would be easy to

answer?

What information from Hey, nelghbor, help me out
a neighbor might help

you? [4

Hey, neighbor, help me out!

A

|

6/30/15

Recursive algorithm

Number of people behind me:

o If there is someone behind me,
ask him/her how many people are behind him/her.
When they respond with a value N, then | will answer N + 1.

o If there is nobody behind me, | will answer 0.

3. How many people are behind me?
2. How many people are hehind me?

‘ 1. How many people are behind me?

Recursive structures

A directory has

o files

and

o (sub) directories

An expression has

o operators

o operands, which are
variables

constants
(sub) expressions

Expressions represented by trees

A tree is +
VAERN
o anode * *
with a bc d
0 zero or more sub
trees

examples:
a*b + c*d
(a+b)*(c+d)

*

VRN
/+ /+\
a \)c d

Structure of recursion

Each of these examples has
o recursive parts (directory, expression, tree)
o non recursive parts (file, variables, nodes)

Would we always need non recursive parts?

Same goes for recursive algorithms.

6/30/15

Cases

Every recursive algorithm has at least 2 cases:

o base case: A simple instance that can be answered
directly.

o recursive case: A more complex instance of the
problem that cannot be directly answered, but can
instead be described in terms of smaller instances.

o Can have more than one base or recursive case, but all
have at least one of each.

o A crucial part of recursive programming is identifying
these cases.

Base and Recursive Cases: Example

public void printStars(int n) {

if (n == 1) {
// base case; print one star
System.out.println("*");

} else {
// recursive case; print one more star
System.out.print ("*");
printStars(n - 1);

Recursion Zen

An even simpler, base case is n=0:

public void printStars(int n) {
if (n == 0) {
// base case; end the line of output
System.out.println() ;

} else {
// recursive case; print one more star

System.out.print ("*");
printStars(n - 1);
}
}
o Recursion Zen: The art of identifying the best set
of cases for a recursive algorithm and expressing

them elegantly.

Everything recursive can be done non-
recursively

// Prints a line containing a given number of stars.
// Precondition: n >= 0
public void printStars(int n) {
for (int i = 0; i < n; i++) {
System.out.print ("*") ;
}
System.out.println() ;

6/30/15

Exercise

Write a method reverseLines that accepts a file
Scanner prints to System. out the lines of the file in
reverse order.

o Write the method recursively and without using loops.

o Example input: Expected output:

this no?
is _— fun
fun is

no? this

o What are the cases to consider?
How can we solve a small part of the problem at a time?
What is a file that is very easy to reverse?

Reversal pseudocode

Reversing the lines of a file:

o Read a line L from the file.

o Print the rest of the lines in reverse order.
o Print the line L.

If only we had a way to reverse the rest of the lines of the
file....

Reversal solution

public void reverseLines (Scanner input) {
if (input.hasNextLine()) {
// recursive case
String line = input.nextLine();
reverselines (input) ;
System.out.println(line) ;

o Where is the base case?

Tracing our algorithm

(Show reversel.ines.java)
call stack: The method invocations running
at any one time.

public void reverselLines(Scanner input) {
if (input.hasNextLine()) {

public void reverselines (Scanner input) {
if (input.hasNextLine()) {

public void reverselLines (Scanner input) {

if (input.hasNextLine()) {
public void reverseLines (Scanner input) {
if (input.hasNextLine()) {
public void reverseLines (Scanner input) {
if (input.hasNextLine()) { // false
}
}
output: NpUE file:
no? this
fun is
is fun
this no?

6/30/15

Recursive power example

Write a method that computes x".
X"=XFXFX*..0*X (ntimes)

An iterative solution:

public int pow(int x, int n) {
int product = 1;
for (int i = 0; i < n; i++) {
product = product * x;
}

return product;

Exercise solution

// Returns base ”~ exponent.
// Precondition: exponent >= 0
public int pow(int x, int n) {
if (n == 0) {
// base case; any number to Oth power is 1
return 1;
} else {
// recursive case: x*n = x * x*(n-1)
return x * pow(x, n-1);

How recursion works

Each call sets up a new instance of all the
parameters and the local variables

When the method completes, control returns to
the method that invoked it (which might be
another invocation of the same method)

pow (4, 3) = pow (4, 2)

*
* 4 * pow(4, 1)
*
*

4 * 4 * pow(4, 0)
4 * 4 * 1

Il
S NN

Infinite recursion

A method with a missing or badly written base
case can causes infinite recursion
public int pow(int x, int y) {

return x * pow(x, y - 1); // Oops! No base case
}

pow(4, 3) = 4 * pow(4, 2)
=4 * 4 * pow(4, 1)
=4 * 4 % 4 * pow(4, 0)
=4 * 4 * 4 % 4 * pow(4, -1)
=4 * 4 * 4 * 4 * 4 * pow(d, -2)
= ... crashes: Stack Overflow Error!

6/30/15

An optimization

Notice the following mathematical property:
3% =(3")"=(9)" =(9°)" = (81)’ =81*(81)’

o How does this "trick" work?

o Do you recognize it?

o How can we incorporate this optimization into our
pow method?

o What is the benefit of this trick?
o Go write it.

Exercise solution 2

// Returns base ”~ exponent.
// Precondition: exponent >= 0
public int pow(int base, int exponent) {
if (exponent == 0) {
// base case; any number to Oth power is 1
return 1;

} else if (exponent % 2 == 0) {
// recursive case 1: x"y = (x"2)"(y/2)
return pow(base * base, exponent / 2);
} else {

// recursive case 2: x*y = x * x*(y-1)
return base * pow(base, exponent - 1);

Activation records

Activation record: memory that Java allocates to store

information about each running method

o return point ("RP"), argument values, local variables

o Java stacks up the records as methods are called; a method's
activation record exists until it returns

o Eclipse debug draws the act. records and helps us trace the
behavior of a recursive method

' x =14 n=1[01]1 pow(4, 0)
| RP = [pow(4,1)] L

| x =14 n=7[11]1] pow(4, 1)
| RP = [pow(4,2)] |

| x =14 n=7[2]] pow(4, 2)
| RP = [pow(4,3)] |

' x =141 n=1[31] 1| pow(4, 3)
| RP = [main] |

| | main

More Recursion!

FRACTION OF AMOUNT OF LOGATON OF
THIS IMAGE BLACK INK. BLAK INK N
WHOH 15 WHITE, BY PANEL: THIS IMAGE:

FRACTION OF
THIS IMAGE
WHH 15 BLACK. I 2 3

http://xked.com/688/

hitp://xked.com/981/

6/30/15

Recursion - examples

Problem: given a string as input, write it
backward

Base case?
Recursion

What questions to ask?

What is a good base case? Perhaps more than
one.

What is the recursive case? Perhaps more than
one

o What are the sub-problems in the recursive case?

o How are the answers to the sub-problems
combined?

What questions to ask?

Is a helper method needed?

o With arrays, you may need extra parameter(s) to
track the index

o If you have to return an array, it may be easier to
pass a result array of the required size and fill it
recursively.

Tail recursion

Tail recursion is a recursive call that occurs as
the last action in a method.

This is not tail recursion:
public int factorial (int n) {
if (n==0)
return 1;

return n* factorial (n-1);

6/30/15

Tail recursion

This is tail recursion:

public int factorial(int n) {
return factorialTail(n, 1);
}
int factorialTail(int n, int product) {
if(n == 0)
return product;
return factorialTail(n-1, product*n);

Tail recursion

This is tail recursion:

public int factorial(int n) {
return factorialTail(n, 1);
}
int factorialTail (int n, int product) {
if(n == 0)
return product;
return factorialTail (n-1, product*n);

But why would you care? Turns out that compilers can
optimize memory usage when they detect that this is the
case.

Tail recursion

This is tail recursion:

public int factorial(int n) {
return factorialTail(n, 1);
}
int factorialTail(int n, int product) {
if(n == 0)
return product;
return factorialTail(n-1, product*n);

When making a recursive call, you no longer need to
save the information about the local variables within the
calling method.

Fractals — the Koch curve and
Sierpinski Triangle

6/30/15

Dictionary lookup

Suppose you’re looking up a word in the
dictionary (paper one, not online!)

You probably won’t scan linearly thru the
pages — inefficient.

What would be your strategy?

Binary search

binarySearch(dictionary, word) {
if (dictionary has one page) {// base case
scan the page for word
}
else {// recursive case

open the dictionary to a point near the middle
determine which half of the dictionary contains word

if (word is in first half of the dictionary) {
binarySearch(first half of dictionary, word)

}
else {

binarySearch (second half of dictionary, word)
}

Binary search

Let’s write a method called binarySearch that
accepts a sorted array of integers and a target
integer and returns the index of an occurrence of
that value in the array.

o If the target value is not found, return -1

index| 0|1|2|3|4|5(|6|7|8|9|10(11|12|13|14|15| 16

value | -4 |2 |7 |10]15]20]22|25|30|36|42|50|56|68|85|92| 103

int index = binarySearch(data, 42); // 10
int index2 = binarySearch(data, 66); // -1

Binary search

// Returns the index of an occurrence of the given
// value in the given array, or -1 if not found.
// Precondition: a is sorted
public int binarySearch(int[] a, int target) {

return binarySearch(a, target, 0, a.length - 1);
i
// Recursive helper to implement search.
private int binarySearch(int[] a, int target,

int first, int last) {
if (first > last) {
return -1; // not found

} else {
int mid = (first + last) / 2;
if (almid] == target) ({
return mid; // found it!

} else if (a[mid] < target) {
// middle element too small; search right half
return binarySearch(a, target, mid+l, last);

} else { // almid] > target
// middle element too large; search left half
return binarySearch(a, target, first, mid-1);

10

6/30/15

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

Try to find the pattern by cases

One disk is easy
Two disks...
Three disks...

Four disk...

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

1 A

44

11

6/30/15

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

A

Towers of Hanoi

Example: Towers of Hanoi, move all disks to third peg without
ever placing a larger disk on a smaller one.

Let's go play with itat: http://www.mazeworks.com/hanoi/index.htm
Or http://www.mathsisfun.com/games/towerofhanoi.html

46

Fibonacci’s Rabbits

Suppose a newly-born pair of
rabbits, one male, one female, are
put on an island.

o A pair of rabbits doesn’t breed until 2 months
old.

o Thereafter each pair produces another pair iﬁ{)
each month

o Rabbits never die.
How many pairs will there be after n
months?

N

T~
&=
, B8

/§/§
- 83

/3%
B B

'

EsmEs
-Eeme e

w

pairs=1 1 2

image from: http://www.jimloy.com/algebra/fibo.htm

Fibonacci numbers

The Fibonacci numbers are a sequence of
numbers F,, Fy, ... F, defined by:

F,=F. +Fforanyi>1

Write a method that, when given an integer |,
computes the nth Fibonacci number.

12

6/30/15

Fibonacci numbers

Let'srunitforn=1,2,3,... 10, ..., 20,...
If n is large the computation takes a long time! Why?

F5
/ \
F4 F3
/N / N\
Fa F2 F2 1
/N /N /N
F2 F1 F1 Fo F1 Fo

Fi FO

Fibonacci numbers

recursive Fibonacci was expensive because it
made many, recursive calls

o fibonacci(n) recomputed fibonacci(n-1),...,fibonacci(1)
many times in finding its answer!

o this is a case, where the sub-tasks handled by the
recursion are redundant with each other and get
recomputed

Fibonacci numbers

Every time n is incremented by 2, the call tree more than
doubles.

Fs
/ \
F4 F3
/ N\ / N\
Fa F2 F2 1
/N /NN
F2 FIFt g F1FO

F1 FO

Growth of rabbit population

112358132134 ...

The fibonacci numbers themselves also grow
rapidly: every 2 months the population at
least DOUBLES

13

