7/15/15

Inheritance

Obtained from the web:
Question: What is the object
oriented way of getting rich?
Answer: Inheritance

The software crisis

software engineering: The practice of conceptualizing,

designing, developing, documenting, and testing large-
scale computer programs.

Large-scale projects face many issues:

getting many programmers to work together

getting code finished on time

avoiding redundant code

finding and fixing bugs

maintaining, improving, and reusing existing code

code reuse: The practice of writing program code once
and using it in many contexts.

0O 0 0 o0 o

Example

You have been tasked with writing a program
that handles pay for the employees of a non-
profit organization.

The organization has several types of
employees on staff:

o Full-time employees

o Hourly workers

o Volunteers

o Executives

Example

Paying an employee:

o Full-time employees — have a monthly pay

o Hourly workers — hourly wages + hours worked
o Volunteers — no pay

o Executives — receive bonuses

7/15/15

Design

Need class/classes that handle employee
pay (should also store employee info such as
name, phone #, address).

Possible choices:

o A single Employee class that knows how to
handle different types of employees

o A separate class for each type of employee.
What are the advantages/disadvantages of
each design?

Design

All types of staff members need to have
some basic functionality — capture thatin a
class called staffMember

Deslgn All types of staff members
need to have some basic
functionality — capture that
in a class called

StaffMember

public class StaffMember {
private String name;
private String address;

private String phone;

public StaffMember (String name, String address,
String phone) {
this.name = name;
this.address = address;
this.phone = phone;
}

// not shown: getters and setters

Code re-use

We'd like to be able to do the following:

// A class to represent a paid employee.
public class Employee {
<copy all the ts from StafflV class.>

private double payRate;

public double pay() {
return payRate;

}

All this without explicitly copying any code!

7/15/15

Inheritance

Creating a subclass, general syntax:

public class <name> extends <superclass name> {
o Example:

public class Employee extends StaffMember {

}

By extending Staf fMember, each Employee object now:

o has name, address, phone instance variables and
get/setName (), get/setAddress (), get/setPhone () methods
automatically

o can be treated as a staffMember by any other code (seen later)

(e.g. an Employee could be stored in a variable of type StaffMember
or stored as an element of an array StaffMember[])

Inheritance

inheritance: A way to create new classes based on
existing classes, taking on their attributes/behavior.
o away to group related classes

o a way to share code between classes

A class extends another by absorbing its state and
behavior.

o super-class: The parent class that is being extended.

o sub-class: The child class that extends the super-class and
inherits its behavior.
The subclass receives a copy of every field and method from its
super-class.
The subclass is a more specific type than its super-class (an is-a
relationship)

Single Inheritance in Java

Creating a subclass, general syntax:
0 public class <name> extends <superclass name>
o Can only extend a single class in Java!

Extends creates an is-A relationship

o class <name> is-A <superclass name>

0 This means that anywhere a <superclass variable> is
used, a <subclass variable> may be used.

o Classes get all the instance variables/methods of their ancestors,
but cannot necessarily directly access them...

New access modifier - protected

public - can be seen/used by everyone

protected — can be seen/used within class
and any subclass.

private - can only be seen/used by code in
class (not in subclass!)

7/15/15

Extends/protected/supet

public class Employee extends StaffMember {
protected String socialSecurityNumber;
protected double payRate;

public Employee (String name, String address,
String phone, String socSecNumber, double rate) {
super (name, address, phone);
socialSecurityNumber = socSecNumber;
payRate = rate;

}

public double pay() {
return payRate;

StaffMember needs to change a bit

public class StaffMember {
protected String name;
protected String address;
protected String phone;

public StaffMember (String name, String address, String
phone) {

this.name = name;

this.address = address;

this.phone = phone;

Overriding methods

override: To write a new version of a method in a
subclass that replaces the super-class's version.
o There is no special syntax for overriding.
To override a super-class method, just write a new version of it in
the subclass. This will replace the inherited version.

o Example:
public class Hourly extends Employee {
// overrides the pay method in Employee class
public double pay () {
double payment = payRate * hoursWorked;
hoursWorked = 0;

return payment;

Calling overridden methods

The new method often relies on the
overridden one. A subclass can call an
overridden method with the super keyword.

Calling an overridden method, syntax:

super . <method name> (<parameter(s)>)
Q public class Executive extends Employee {
public double pay() {
double payment = super.pay() + bonus;
bonus = 0;

return payment;

7/15/15

Constructors

Constructors are not inherited.

o Default constructor:
public Employee () {
super () ; // calls StaffMember () constructor
}
o Constructor needs to call super-class constructors explicitly:

public Employee (String name, String address, String phone,
String socSecNumber, double rate) {
super (name, address, phone);
socialSecurityNumber = socSecNumber;
payRate = rate;
} The super call must be the first
statement in the constructor.

Inheritance and

Polymorphism

Everything is an Object

Every class in Java implicitly extends the Java
Object class.

Therefore every Java class inherits all the
methods of the class Object, suchas

0 equals (Object other)

o toString()

Often we want to override the standard
implementation

Note the difference between overloading and
overriding!

The equals method

You might think that the following is a valid implementation of the
equals method:
public boolean equals(Object other) {
if (name.equals (other.name)) {
return true;
} else {
return false;
}
}
However, it does not compile.
StaffMember.java:36: cannot find symbol
symbol : variable name
location: class java.lang.Object

Why? Because an Object does not have a name
instance variable.

7/15/15

Type casting

The object that is passed to equals can be cast from
Object into your class's type.
o Example:
public boolean equals (Object o) {
StaffMember other = (StaffMember) o;
return name == other.name;
}
Type-casting with objects behaves differently than
casting primitive values.
o We are really casting a reference of type Object into a
reference of type StaffMember.

o We're promising the compiler that o refers to a StaffMember
object, and thus has an instance variable name.

Type casting: equals example

The object that is passed to equals can be cast from
Object into your class's type.

Equals example:

public boolean equals (Object o) {
StaffMember other = (StaffMember) o;
return name.equals (other.name) ;

instanceof

We can use a keyword called instanceof to ask
whether a variable refers to an object of a given type.
a The instanceof keyword, general syntax:

<variable> instanceof <type>

o The above is a boolean expression that can be used as the test
in an if statement.

o Examples:
String s = "hello";
StaffMember p = new StaffMember(..);
if (s instanceof String)
if (p instanceof String)

Our final version of equals

This version of the equals method allows us to correctly
compare staffMember objects with any type of object:

// Returns whether o refers to a StaffMember
// object with the same name
public boolean equals (Object o) {
if (o instanceof StaffMember) {
StaffMember other = (StaffMember) o;
return name.equals (other.name);
} else {
return false;

}

7/15/15

Binding: which method is called?

Assume that the following four classes have been declared:

public class Foo {
public void methodl () {
System.out.println("foo 1");

}

public void method2() {
System.out.println("foo 2");
}

public String toString() {
return "foo";
}
}

public class Bar extends Foo {
public void method2 () {
System.out.println("bar 2");
}

Example

public class Baz extends Foo {
public void methodl () {
System.out.println("baz 1");
}
public String toString() {
return "baz";
}
}
public class Mumble extends Baz {
public void method2() {
System.out.println("mumble 2");
}
}

The output of the following client code?

Foo[] a = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < a.length; i++) {
System.out.println(a[i]);
a[i] .methodl() ;
a[i] .method2 () ;
System.out.println();

Describing inheritance and binding

UML diagram: e
Subclasses point to their ez
super-class —
List methods (inherited Bar Baz
methods in parenthesis) | e
Method called is the iy oo
nearest in the hierarchy

. Mumble
going up the tree
o This is a dynamic (run %Z}:u:z)”

time) phenomenon called
dynamic binding

Example (solved)

Foo[] a = {new Baz(), new Bar(), new Mumble(), new Foo()};
for (int i = 0; i < a.length; i++) {
System.out.println(alil);
a[i] .methodl () ;
a[i] .method2 () ; Foo
System.out.println()

) method1
method2
. tostring
Output? 937 1
foo 2 [1
Bar Baz
foo
foo 1
bar 2 (method?) method
method2 (methoc2)
baz (toString) [toString
baz 1
mumble 2
foo Mumble
foo 1
foo 2 (method?)
method2
(tostring)

baz1
mumble 2
baz

7/15/15

Polymorphism

It's legal for a variable of a super-class to refer
to an object of one of its subclasses.
Example:

staffList = new StaffMember[6];
stafflist[0] = new Executive("Sam", "123 Main Line",
"555-0469", "123-45-6789", 2423.07);

staffList[1] = new Employee("Carla", "456 Off Line",
"555-0101", "987-65-4321", 1246.15);
staffList[2] = new Employee ("Woody", "789 Off Rocker",

"555-0000", "010-20-3040", 1169.23);
((Executive)staffList[0]) .awardBonus (500.00);

Arrays of a super-class type can store any subtype as elements.

Polymorphism and casting

When a primitive type is used to store a value
of another type (e.g. an int inadouble
variable) conversion takes place.

When a subclass is stored in a superclass no
conversion occurs!

Polymorphism defined

Polymorphism: the ability for the same code to
be used with several different types of objects
and behave differently depending on the actual
type of object used.

Example:

for (int count=0; count < staffList.length; count++)
{
amount = stafflList[count].pay(); // polymorphic

Polymorphism and parameters

You can pass any subtype of a parameter's
type.

public class EmployeeMain {
public static void main(String[] args) {
Executive lisa = new Executive (.);
Volunteer steve = new Volunteer (..);
payEmployee (lisa) ;
payEmployee (steve) ;
}

public static void payEmployee (StaffMember s) (
System.out.println("salary = " + s.pay());
}

7/15/15

Notes about polymorphism

The program doesn’t know which pay method
to call until it’s actually running. This has
many names: late binding, dynamic binding,
virtual binding, and dynamic dispatch.

You can only call methods known to the
super-class, unless you explicitly cast.

You cannot assign a super-class object to a
sub-class variable (a cow is an animal, but
an animal is not a cow!)

instanceof operator in this context

Pet p = new Pet();
Pet q = new Cat(); // class Cat extends Pet

Then,

o (p instanceof Pet) == true

o (p instanceof Cat) == false
o (q instanceof Pet) == true

o (q instanceof Cat) == true

Abstract classes

An abstract class: can leave one or more method
implementations unspecified

An abstract method has no body (i.e.,no implementation).

Hence, an abstract class is incomplete and cannot be
instantiated, but can be used as a base class.

abstract public class abstract-base-class-name {

public abstract return-type method-name (params) ;

A subclass is required to override the abstract
} method and provide an implementation.

public class derived-class-name {

public return-type method-name (params)
{ statements; }

Example

Let's convert staffMember to an abstract
class....

7/15/15

Example

Let's convert staffMember to an abstract

class.
public abstract class StaffMember {

public abstract double pay();

Now the sub classes must override pay(),
thereby implementing pay() appropriately
for each sub type of StaffMember

Abstract classes
When to use abstract classes
o To represent entities that are insufficiently defined

o Group together data/behavior that is useful for its
subclasses

Inheritance: FAQ

How can a subclass call a method or a constructor

defined in a super-class?

o Use super().method or super()

Does Java support multiple inheritance?

a No. Use interfaces instead

What restrictions are placed on method overriding?

o Same name, argument list, and return type. May not throw
exceptions that are not thrown by the overriden method, or limit
the access to the method

Does a class inherit the constructors of its super-class?

o No. Need to call them explicitly

this and super in constructors

this (..) calls a constructor of the same
class.

super (..) calls a constructor of the super-
class.

Both need to be the first action in a
constructor.

10

