

Java classes

Savitch, ch 5

2

Objects and classes
 object: An entity that combines state and behavior.

 object-oriented programming (OOP): Writing
programs that perform most of their behavior as
interactions between objects.

 class: 1. A program/module. or,
2. A blueprint/template for an object.

 classes you may have used so far:
String, Scanner, File

 We will write classes to define new types of objects.

3

Abstraction
 abstraction: A distancing between ideas and details.

 Objects in Java provide abstraction:
We can use them without knowing how they work.

 You use abstraction every day.
Example: Your portable music player.
 You understand its external behavior (buttons, screen, etc.)
 You don't understand its inner details (and you don't need to).

4

Class = blueprint, Object = instance
Music player blueprint

state:
current song
volume
battery life
behavior:
power on/off
change station/song
change volume
choose random song

Music player #1
state:
 song = "Thriller"
 volume = 17
 battery life = 2.5 hrs

behavior:
 power on/of
 change station/song
 change volume
 choose random song

Music player #2
state:
 song = ”Feels like rain"
 volume = 9
 battery life = 3.41 hrs

behavior:
 power on/of
 change station/song
 change volume
 choose random song

Music player #3
state:
 song = "Code Monkey"
 volume = 24
 battery life = 1.8 hrs

behavior:
 power on/of
 change station/song
 change volume
 choose random song

How often would you expect
to get snake eyes?

If you’re unsure on how to

compute the probability then

you write a program that

simulates the process.

Can do this with short bit of code (google it) in a
main method, but let's say you want to reuse
this code in multiple game development
projects.

Snake Eyes
public class SnakeEyes {

public static void main(String[] args){
 int ROLLS = 100000;

 int count = 0;
 Die die1 = new Die();
 Die die2 = new Die();
 for (int i = 0; i < ROLLS; i++){
 if (die1.roll() == 1 && die2.roll() == 1){
 count++;
 }

 }
 System.out.println(”snake eyes probability: " +
 (float)count / ROLLS);
 }
}

Need to write the Die class!

7

Die object

 State (data) of a Die object:

 Behavior (methods) of a Die object:

Method name Description

roll() roll the die (and return the value rolled)

getFaceValue() retrieve the value of the last roll

Instance variable Description

numFaces the number of faces for a die

faceValue the current value produced by rolling the die

8

The Die class

 The class (blueprint) knows how to create objects.
Die class

state:
int numFaces
int faceValue
behavior:
roll()
getFaceValue()

Die object #1
state:
numFaces = 6

faceValue = 2

behavior:
roll()
getFaceValue()

Die object #2
state:
numFaces = 6

faceValue = 5

behavior:
roll()
getFaceValue()

Die object #3
state:
numFaces = 10

faceValue = 8

behavior:
roll()
getFaceValue()

Die die1 = new Die();

9

Object state:
instance variables

10

Die class

 The following code creates a new class named Die.
public class Die {
 public int numFaces;
 public int faceValue;
}
 Save this code into a file named Die.java.

 Each Die object contains two pieces of data:
 an int named numFaces,
 an int named faceValue

 No behavior (yet).

declared outside of
any method

11

Instance variables
 instance variable: A variable inside an object that holds

part of its state.
 Each object has its own copy.

 Declaring an instance variable:
<type> <name> ;

public class Die {
 public int numFaces;
 public int faceValue;
}

Instance variables
Each Die object maintains its own numFaces
and faceValue variable, and thus its own
state

Die die1 = new Die();
 Die die2 = new Die();

die1 5numFaces

faceValue

die2 6numFaces

faceValue

2

3

13

Accessing instance variables

 Code in other classes can access your object's
instance variables.
 Accessing an instance variable: dot operator

<variable name>.<instance variable>

 Modifying an instance variable:

<variable name>.<instance variable> = <value> ;
 Examples:

System.out.println(”you rolled " + die.faceValue);
die.faceValue = 20;

14

Client code
 Die.java can be made executable by giving it a main …

 We will almost always do this…. WHY?
 To test the class Die before it is used by other classes

 or can be used by other programs stored in separate .java files.
 client code: Code that uses a class

Roll.java (client code)

main(String[] args) {
 Die die1 = new Die();
 die1.numFaces = 6;
 die1.faceValue = 5;

 Die die2 = new Die();
 die2.numFaces = 10;
 die2.faceValue = 3;
 ...
}

Die.java

public class Die {
 public int numFaces;
 public int faceValue;
}

15

Object behavior: methods

16

Instance methods
 Classes combine state and behavior.
 instance variables: define state
 instance methods: define behavior for each

object of a class---the way objects communicate
with each other and with users.

 instance method declaration, general syntax:

public <type> <name> (<parameter(s)>) {
 <statement(s)> ;
}

Rolling the dice: instance methods

public class Die {
 public int numFaces;
 public int faceValue;

 public int roll (){
 faceValue = (int)(Math.random() * numFaces) + 1;
 return faceValue;
 }

}

Die die1 = new Die();
die1.numFaces = 6;
int value1 = die1.roll();
Die die2 = new Die();
die2.numFaces = 10;
int value2 = die2.roll();

Think of each Die object as having its own
copy of the roll method, which operates
on that object's state

18

Object initialization:
constructors

19

Initializing objects

 When we create a new object, we can assign
values to all, or some of, its instance variables:

 Die die1 = new Die(6);

How do we make that happen?

Die constructor
public class Die {

 public int numFaces;
 public int faceValue;

 public Die (int faces) {
 numFaces = faces;

 faceValue = 1;
 }

 public int roll (){
 faceValue = (int)(Math.random()*numFaces) + 1;

 return faceValue;
 }

}

Die die1 = new Die(6);

21

Constructors
 constructor: creates and initializes a new object

public <type> (<parameter(s)>) {

 <statement(s)> ;
}

 For a constructor the <type> is the name of the class

 A constructor runs when the client uses the new keyword.

 A constructor implicitly returns the newly created and initialized

object.

 If a class has no constructor, Java gives it a default constructor

with no parameters that sets all the object's fields to 0 or null.
 we did this in Recap.java

Multiple constructors are possible
public class Die {

 int numFaces;
 int faceValue;

 public Die () {
 numFaces = 6;

 faceValue = 1;
 }

 public Die (int faces) {
 numFaces = faces;

 faceValue = 1;
 }

}

Die die1 = new Die(5);
Die die2 = new Die();

The Student class
 Let’s write a class called Student with the

following state and behavior:

Student
state:
String name
String id
int[] grades

behavior:
Constructor – takes id and name
numGrades – returns the number of grades
addGrade – adds a grade
getAverage – computes the average grade

24

Encapsulation

25

Encapsulation

 encapsulation:
Hiding implementation details of an object
from clients.

 Encapsulation provides abstraction;
we can use objects without knowing how they
work.
The object has:
 an external view (its behavior)
 an internal view (the state and methods that

accomplish the behavior)

26

Implementing encapsulation
 Instance variables can be declared private to indicate

that no code outside their own class can access or
change them.

 Declaring a private instance variable:

private <type> <name> ;
 Examples:

private int faceValue;
private String name;

 Once instance variables are private, client code cannot
access them:

 Roll.java:11: faceValue has private access in Die
 System.out.println(”faceValue is " + die.faceValue);
 ̂

Instance variables, encapsulation and access

 In our previous implementation of the Die class we used
the public access modifier:

 public class Die {
 public int numFaces;
 public int faceValue;

 }
 We can encapsulate the instance variables using private:
 public class Die {

 private int numFaces;
 private int faceValue;

 }
 But how does a client class now get to these?

28

Accessors and mutators
 We provide accessor methods to examine their values:

public int getFaceValue() {
 return faceValue;
}

 This gives clients read-only access to the object's fields.
 Client code will look like this:

System.out.println(”faceValue is " + die.getFaceValue());

 If required, we can also provide mutator methods:

public void setFaceValue(int value) {
 faceValue = value;
}

Often not needed. Do we need a mutator method in this case?

29

Benefits of encapsulation
 Protects an object from unwanted access by clients.

 Example: If we write a program to manage users' bank
accounts, we don't want a malicious client program to be
able to arbitrarily change a BankAccount object's balance.

 Allows you to change the class implementation later.

 As a general rule, all instance data should be modified only
by the object, i.e. instance variables should be declared
private

Access Protection: Summary

Access protection has three main benefits:

 It allows you to enforce constraints on an object's state.

 It provides a simpler client interface. Client programmers
don't need to know everything that’s in the class, only the
public parts.

 It separates interface from implementation, allowing
them to vary independently.

General guidelines

As a rule of thumb:
 Classes are public.
 Instance variables are private.
 Constructors are public.
 Getter and setter/mutator methods are public
 Other methods must be decided on a case-by-

case basis.

Printing Objects
 We would like to be able to print a Java object like this:

Student student = new Student(…);
System.out.println(“student: " + student);

 Would like this to provide output that is more useful than
what Java provides by default.

 Need to provide a toString() method

The toString() method
 tells Java how to convert an object into a String
 called when an object is printed or concatenated to a String

Point p = new Point(7, 2);
System.out.println(”p: " + p);

 Same as:

System.out.println("p: " + p.toString());

 Every class has a toString(), even if it isn't in your code.
 The default is the class's name and a hex (base-16) hash-code:

Point@9e8c34

toString() implementation

public String toString() {
 //code that returns a suitable String;
}

 Example: toString() method for our Student class:

public String toString(){
return ”name: " + name+ "\n"

 + ”id: " + id + "\n"
 + ”average: " + getAverage();
}

Variable shadowing
 A method parameter can have the same name as one of

the instance variables:

public class Point {
private int x;

private int y;
 …
// this is legal
public void setLocation(int x, int y) {
 // when using x and y you get the parameters
}

 Instance variables x and y are shadowed by
parameters with the same names.

Avoiding variable shadowing

public class Point {
 private int x;
 private int y;

 ...

 public void setLocation(int x_value, int y_value) {
 x = x_value;
 y = y_value;
 }
}

Avoiding shadowing using this

public class Point {
 private int x;
 private int y;

 ...

 public void setLocation(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

 Inside the setLocation method,
 When this.x is seen, the instance variable x is used.
 When x is seen, the parameter x is used.

Multiple constructors
 It is legal to have more than one constructor in a class.

 The constructors must accept different parameters.

public class Point {
 private int x;
 private int y;

 public Point() {
 x = 0;
 y = 0;
 }

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

Constructors and this
 One constructor can call another using this:

public class Point {
 private int x;
 private int y;

 public Point() {
 this(0, 0); //calls the (x, y) constructor
 }

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 ...
}

Summary of this
 this : A reference to the current instance of a given class
 using this:

 To refer to an instance variable:

this.variable

 To call a method:

this.method(parameters);

 To call a constructor from another constructor:

this(parameters);

Example of using this
public class MyThisTest {
 private int a;

 public MyThisTest() {
 this(42);
 }
 public MyThisTest(int a) {
 this.a = a;
 }
 public void someSomething() {
 int a = 1;
 System.out.println(a);
 System.out.println(this.a);
 System.out.println(this);
 }
 public String toString() {
 return "MyThisTest a=" + a; // refers to the instance variable a
 }
}

42

The implicit parameter
 During the call die.roll(); ,

the object referred to by die is the implicit parameter to

the method.

 The method int roll() is really int roll(Die this)

 The call die.roll() is translated to roll(die)

Method overloading
 Can you write different methods that have the same

name?
 Yes!

System.out.println(“I can handle strings”);

System.out.println(2 + 2);
System.out.println(3.14);
System.out.println(object);

 Math.max(10, 15); // returns integer
Math.max(10.0, 15.0); // returns double

Useful when you need to perform the same operation on different
kinds of data.

Method overloading

public int sum(int num1, int num2){
 return num1 + num2;
}
public int sum(int num1, int num2, int num3){
 return num1 + num2 + num3;
}
 A method’s name + number, type, and order of its

parameters: method signature
 The compiler uses a method’s signature to bind a method

invocation to the appropriate definition

The return value is not part of
the signature
 You cannot overload on the basis of the return

type (because it can be ignored)

 Example of invalid overloading:

public int convert(int value) {
return 2 * value;

}

public double convert(int value) {

return 2.54 * value;
}

Example

 Consider the class Pet

class Pet {
private String name;
private int age;
private double weight;

…
}

Example (cont)

public Pet()

public Pet(String name, int age, double weight)
public Pet(int age)
public Pet(double weight)

Suppose you have a horse that weights 750 pounds then you use:

Pet myHorse = new Pet(750.0);
but what happens if you do:

Pet myHorse = new Pet(750);

Primitive Equality

 Suppose we have two integers i and j
 How does the statement i==j behave?
 i==j if i and j contain the same value

Object Equality
 Suppose we have two pet instances pet1

and pet2
 How does the statement pet1==pet2

behave?

Object Equality

 Consider the following lines of code:

String s1 = new String(“Java”);

String s2 = new String(“Java”);

Is s1==s2 True?

a) Yes b) No

Object Equality

 Consider the following lines of code:

String s1 = new String(“Java”);

String s2 = new String(“Java”);

Is s1.equals(s2) True?

a) Yes b) No

Object Equality
 Suppose we have two pet instances pet1

and pet2
 How does the statement pet1==pet2

behave?
 pet1==pet2 is true if both refer to the same

object
 The == operator checks if the addresses of

the two objects are equal
 May not be what we want!

Object Equality - extended

 If you want a different notion of equality define
your own .equals() method.

 Do pet1.equals(pet2) instead of
pet1==pet2

 The default definition of .equals() is the
value of ==

 but for Strings the contents are compared

.equals for the Pet class

public boolean equals (Object other) {
 if (this == other)

 return true;
if (!(other instanceof Pet)) {
 return false;

 }
 Pet otherPet = (Pet) other;

return ((this.age == otherPet.age)
 &&(Math.abs(this.weight – otherPet.weight) < 1e-8)
 &&(this.name.equals(otherPet.name)));
}

This is not explained correctly in the book (section 5.3)!!

Naming things
 Computer programs are written to be read by

humans and only incidentally by computers.
 Use names that convey meaning
 Loop indices are often a single character (i, j,

k), but others should be more informative.
 Importance of a name depends on its scope:

Names with a “short life” need not be as
informative as those with a “long life”

 Read code and see how others do it

