

Java classes

Savitch, ch 5

2

Objects and classes
 object: An entity that combines state and behavior.

 object-oriented programming (OOP): Writing
programs that perform most of their behavior as
interactions between objects.

 class: 1. A program/module. or,
2. A blueprint/template for an object.

 classes you may have used so far:
String, Scanner, File

 We will write classes to define new types of objects.

3

Abstraction
 abstraction: A distancing between ideas and details.

 Objects in Java provide abstraction:
We can use them without knowing how they work.

 You use abstraction every day.
Example: Your portable music player.
 You understand its external behavior (buttons, screen, etc.)
 You don't understand its inner details (and you don't need to).

4

Class = blueprint, Object = instance
Music player blueprint

state:
current song
volume
battery life
behavior:
power on/off
change station/song
change volume
choose random song

Music player #1
state:
 song = "Thriller"
 volume = 17
 battery life = 2.5 hrs

behavior:
 power on/of
 change station/song
 change volume
 choose random song

Music player #2
state:
 song = ”Feels like rain"
 volume = 9
 battery life = 3.41 hrs

behavior:
 power on/of
 change station/song
 change volume
 choose random song

Music player #3
state:
 song = "Code Monkey"
 volume = 24
 battery life = 1.8 hrs

behavior:
 power on/of
 change station/song
 change volume
 choose random song

How often would you expect
to get snake eyes?

If you’re unsure on how to

compute the probability then

you write a program that

simulates the process.

Can do this with short bit of code (google it) in a
main method, but let's say you want to reuse
this code in multiple game development
projects.

Snake Eyes
public class SnakeEyes {

public static void main(String[] args){
 int ROLLS = 100000;

 int count = 0;
 Die die1 = new Die();
 Die die2 = new Die();
 for (int i = 0; i < ROLLS; i++){
 if (die1.roll() == 1 && die2.roll() == 1){
 count++;
 }

 }
 System.out.println(”snake eyes probability: " +
 (float)count / ROLLS);
 }
}

Need to write the Die class!

7

Die object

 State (data) of a Die object:

 Behavior (methods) of a Die object:

Method name Description

roll() roll the die (and return the value rolled)

getFaceValue() retrieve the value of the last roll

Instance variable Description

numFaces the number of faces for a die

faceValue the current value produced by rolling the die

8

The Die class

 The class (blueprint) knows how to create objects.
Die class

state:
int numFaces
int faceValue
behavior:
roll()
getFaceValue()

Die object #1
state:
numFaces = 6

faceValue = 2

behavior:
roll()
getFaceValue()

Die object #2
state:
numFaces = 6

faceValue = 5

behavior:
roll()
getFaceValue()

Die object #3
state:
numFaces = 10

faceValue = 8

behavior:
roll()
getFaceValue()

Die die1 = new Die();

9

Object state:
instance variables

10

Die class

 The following code creates a new class named Die.
public class Die {
 public int numFaces;
 public int faceValue;
}
 Save this code into a file named Die.java.

 Each Die object contains two pieces of data:
 an int named numFaces,
 an int named faceValue

 No behavior (yet).

declared outside of
any method

11

Instance variables
 instance variable: A variable inside an object that holds

part of its state.
 Each object has its own copy.

 Declaring an instance variable:
<type> <name> ;

public class Die {
 public int numFaces;
 public int faceValue;
}

Instance variables
Each Die object maintains its own numFaces
and faceValue variable, and thus its own
state

Die die1 = new Die();
 Die die2 = new Die();

die1 5numFaces

faceValue

die2 6numFaces

faceValue

2

3

13

Accessing instance variables

 Code in other classes can access your object's
instance variables.
 Accessing an instance variable: dot operator

<variable name>.<instance variable>

 Modifying an instance variable:

<variable name>.<instance variable> = <value> ;
 Examples:

System.out.println(”you rolled " + die.faceValue);
die.faceValue = 20;

14

Client code
 Die.java can be made executable by giving it a main …

 We will almost always do this…. WHY?
 To test the class Die before it is used by other classes

 or can be used by other programs stored in separate .java files.
 client code: Code that uses a class

Roll.java (client code)

main(String[] args) {
 Die die1 = new Die();
 die1.numFaces = 6;
 die1.faceValue = 5;

 Die die2 = new Die();
 die2.numFaces = 10;
 die2.faceValue = 3;
 ...
}

Die.java

public class Die {
 public int numFaces;
 public int faceValue;
}

15

Object behavior: methods

16

Instance methods
 Classes combine state and behavior.
 instance variables: define state
 instance methods: define behavior for each

object of a class---the way objects communicate
with each other and with users.

 instance method declaration, general syntax:

public <type> <name> (<parameter(s)>) {
 <statement(s)> ;
}

Rolling the dice: instance methods

public class Die {
 public int numFaces;
 public int faceValue;

 public int roll (){
 faceValue = (int)(Math.random() * numFaces) + 1;
 return faceValue;
 }

}

Die die1 = new Die();
die1.numFaces = 6;
int value1 = die1.roll();
Die die2 = new Die();
die2.numFaces = 10;
int value2 = die2.roll();

Think of each Die object as having its own
copy of the roll method, which operates
on that object's state

18

Object initialization:
constructors

19

Initializing objects

 When we create a new object, we can assign
values to all, or some of, its instance variables:

 Die die1 = new Die(6);

How do we make that happen?

Die constructor
public class Die {

 public int numFaces;
 public int faceValue;

 public Die (int faces) {
 numFaces = faces;

 faceValue = 1;
 }

 public int roll (){
 faceValue = (int)(Math.random()*numFaces) + 1;

 return faceValue;
 }

}

Die die1 = new Die(6);

21

Constructors
 constructor: creates and initializes a new object

public <type> (<parameter(s)>) {

 <statement(s)> ;
}

 For a constructor the <type> is the name of the class

 A constructor runs when the client uses the new keyword.

 A constructor implicitly returns the newly created and initialized

object.

 If a class has no constructor, Java gives it a default constructor

with no parameters that sets all the object's fields to 0 or null.
 we did this in Recap.java

Multiple constructors are possible
public class Die {

 int numFaces;
 int faceValue;

 public Die () {
 numFaces = 6;

 faceValue = 1;
 }

 public Die (int faces) {
 numFaces = faces;

 faceValue = 1;
 }

}

Die die1 = new Die(5);
Die die2 = new Die();

The Student class
 Let’s write a class called Student with the

following state and behavior:

Student
state:
String name
String id
int[] grades

behavior:
Constructor – takes id and name
numGrades – returns the number of grades
addGrade – adds a grade
getAverage – computes the average grade

24

Encapsulation

25

Encapsulation

 encapsulation:
Hiding implementation details of an object
from clients.

 Encapsulation provides abstraction;
we can use objects without knowing how they
work.
The object has:
 an external view (its behavior)
 an internal view (the state and methods that

accomplish the behavior)

26

Implementing encapsulation
 Instance variables can be declared private to indicate

that no code outside their own class can access or
change them.

 Declaring a private instance variable:

private <type> <name> ;
 Examples:

private int faceValue;
private String name;

 Once instance variables are private, client code cannot
access them:

 Roll.java:11: faceValue has private access in Die
 System.out.println(”faceValue is " + die.faceValue);
 ̂

Instance variables, encapsulation and access

 In our previous implementation of the Die class we used
the public access modifier:

 public class Die {
 public int numFaces;
 public int faceValue;

 }
 We can encapsulate the instance variables using private:
 public class Die {

 private int numFaces;
 private int faceValue;

 }
 But how does a client class now get to these?

28

Accessors and mutators
 We provide accessor methods to examine their values:

public int getFaceValue() {
 return faceValue;
}

 This gives clients read-only access to the object's fields.
 Client code will look like this:

System.out.println(”faceValue is " + die.getFaceValue());

 If required, we can also provide mutator methods:

public void setFaceValue(int value) {
 faceValue = value;
}

Often not needed. Do we need a mutator method in this case?

29

Benefits of encapsulation
 Protects an object from unwanted access by clients.

 Example: If we write a program to manage users' bank
accounts, we don't want a malicious client program to be
able to arbitrarily change a BankAccount object's balance.

 Allows you to change the class implementation later.

 As a general rule, all instance data should be modified only
by the object, i.e. instance variables should be declared
private

Access Protection: Summary

Access protection has three main benefits:

 It allows you to enforce constraints on an object's state.

 It provides a simpler client interface. Client programmers
don't need to know everything that’s in the class, only the
public parts.

 It separates interface from implementation, allowing
them to vary independently.

General guidelines

As a rule of thumb:
 Classes are public.
 Instance variables are private.
 Constructors are public.
 Getter and setter/mutator methods are public
 Other methods must be decided on a case-by-

case basis.

Printing Objects
 We would like to be able to print a Java object like this:

Student student = new Student(…);
System.out.println(“student: " + student);

 Would like this to provide output that is more useful than
what Java provides by default.

 Need to provide a toString() method

The toString() method
 tells Java how to convert an object into a String
 called when an object is printed or concatenated to a String

Point p = new Point(7, 2);
System.out.println(”p: " + p);

 Same as:

System.out.println("p: " + p.toString());

 Every class has a toString(), even if it isn't in your code.
 The default is the class's name and a hex (base-16) hash-code:

Point@9e8c34

toString() implementation

public String toString() {
 //code that returns a suitable String;
}

 Example: toString() method for our Student class:

public String toString(){
return ”name: " + name+ "\n"

 + ”id: " + id + "\n"
 + ”average: " + getAverage();
}

Variable shadowing
 A method parameter can have the same name as one of

the instance variables:

public class Point {
private int x;

private int y;
 …
// this is legal
public void setLocation(int x, int y) {
 // when using x and y you get the parameters
}

 Instance variables x and y are shadowed by
parameters with the same names.

Avoiding variable shadowing

public class Point {
 private int x;
 private int y;

 ...

 public void setLocation(int x_value, int y_value) {
 x = x_value;
 y = y_value;
 }
}

Avoiding shadowing using this

public class Point {
 private int x;
 private int y;

 ...

 public void setLocation(int x, int y) {
 this.x = x;
 this.y = y;
 }
}

 Inside the setLocation method,
 When this.x is seen, the instance variable x is used.
 When x is seen, the parameter x is used.

Multiple constructors
 It is legal to have more than one constructor in a class.

 The constructors must accept different parameters.

public class Point {
 private int x;
 private int y;

 public Point() {
 x = 0;
 y = 0;
 }

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

Constructors and this
 One constructor can call another using this:

public class Point {
 private int x;
 private int y;

 public Point() {
 this(0, 0); //calls the (x, y) constructor
 }

 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }

 ...
}

Summary of this
 this : A reference to the current instance of a given class
 using this:

 To refer to an instance variable:

this.variable

 To call a method:

this.method(parameters);

 To call a constructor from another constructor:

this(parameters);

Example of using this
public class MyThisTest {
 private int a;

 public MyThisTest() {
 this(42);
 }
 public MyThisTest(int a) {
 this.a = a;
 }
 public void someSomething() {
 int a = 1;
 System.out.println(a);
 System.out.println(this.a);
 System.out.println(this);
 }
 public String toString() {
 return "MyThisTest a=" + a; // refers to the instance variable a
 }
}

42

The implicit parameter
 During the call die.roll(); ,

the object referred to by die is the implicit parameter to

the method.

 The method int roll() is really int roll(Die this)

 The call die.roll() is translated to roll(die)

Method overloading
 Can you write different methods that have the same

name?
 Yes!

System.out.println(“I can handle strings”);

System.out.println(2 + 2);
System.out.println(3.14);
System.out.println(object);

 Math.max(10, 15); // returns integer
Math.max(10.0, 15.0); // returns double

Useful when you need to perform the same operation on different
kinds of data.

Method overloading

public int sum(int num1, int num2){
 return num1 + num2;
}
public int sum(int num1, int num2, int num3){
 return num1 + num2 + num3;
}
 A method’s name + number, type, and order of its

parameters: method signature
 The compiler uses a method’s signature to bind a method

invocation to the appropriate definition

The return value is not part of
the signature
 You cannot overload on the basis of the return

type (because it can be ignored)

 Example of invalid overloading:

public int convert(int value) {
return 2 * value;

}

public double convert(int value) {

return 2.54 * value;
}

Example

 Consider the class Pet

class Pet {
private String name;
private int age;
private double weight;

…
}

Example (cont)

public Pet()

public Pet(String name, int age, double weight)
public Pet(int age)
public Pet(double weight)

Suppose you have a horse that weights 750 pounds then you use:

Pet myHorse = new Pet(750.0);
but what happens if you do:

Pet myHorse = new Pet(750);

Primitive Equality

 Suppose we have two integers i and j
 How does the statement i==j behave?
 i==j if i and j contain the same value

Object Equality
 Suppose we have two pet instances pet1

and pet2
 How does the statement pet1==pet2

behave?

Object Equality

 Consider the following lines of code:

String s1 = new String(“Java”);

String s2 = new String(“Java”);

Is s1==s2 True?

a) Yes b) No

Object Equality

 Consider the following lines of code:

String s1 = new String(“Java”);

String s2 = new String(“Java”);

Is s1.equals(s2) True?

a) Yes b) No

Object Equality
 Suppose we have two pet instances pet1

and pet2
 How does the statement pet1==pet2

behave?
 pet1==pet2 is true if both refer to the same

object
 The == operator checks if the addresses of

the two objects are equal
 May not be what we want!

Object Equality - extended

 If you want a different notion of equality define
your own .equals() method.

 Do pet1.equals(pet2) instead of
pet1==pet2

 The default definition of .equals() is the
value of ==

 but for Strings the contents are compared

.equals for the Pet class

public boolean equals (Object other) {
 if (this == other)

 return true;
if (!(other instanceof Pet)) {
 return false;

 }
 Pet otherPet = (Pet) other;

return ((this.age == otherPet.age)
 &&(Math.abs(this.weight – otherPet.weight) < 1e-8)
 &&(this.name.equals(otherPet.name)));
}

This is not explained correctly in the book (section 5.3)!!

Naming things
 Computer programs are written to be read by

humans and only incidentally by computers.
 Use names that convey meaning
 Loop indices are often a single character (i, j,

k), but others should be more informative.
 Importance of a name depends on its scope:

Names with a “short life” need not be as
informative as those with a “long life”

 Read code and see how others do it

