
1

CS 161: Object Oriented
Problem Solving

About this course

n  Like 160, 161 is a combination of programming
and discrete math.
q  Why is math important to us? What does that

have to do with computer science?
n  From procedural to object oriented programming

2

About this course
n  Course webpage:

 http://www.cs.colostate.edu/~cs161/

q  The course webpage is our major communication tool.

Check it on a daily basis!

q  Canvas will be used for grades

q  Piazza will be used for forums

3

Texts

n  Java: an introduction to problem solving and
programming, 7th edition.

n  Discrete Mathematics and Its Applications,
7th edition. Kenneth Rosen.

4

2

Components of the course
q  Quizzes & class participation:
 “are you with us?” Not worth many points but

useful finger on the pulse (for you and me)
q  Tests:
 “what have you learned?” Important checkpoints!!
q  Programming assignments:
 “can you implement it?” Important!! We will use the

same automatic submission/grading system used last
semester in 160.

q  Written assignments:
 “do you understand the theory?”

5

About this course

n  Lectures
q  You pay for them, might as well use them
q  Slides are posted ahead of time so you can print

them and take notes during class
q  We are here to help

n  Recitation
q  Help you with programming and homework

assignments, reinforce material from lecture.
q  You get credit for attending and participating in

recit

6

Grading

 Assignments
 Quizzes (iClickers and paper)

 Recitation (attendance + completion)

 Midterms (2) the first is a programming midterm (in recit)

 Final

 For the percentage break down see web page. You need
to have a passing grade on the exams (>= 60) to get a C
in the course.

7

CS building

n  Make sure you can get into the Unix lab (CSB
120)!
If you have keycard access problems:
q  CS students: talk to a CS accounting person (Kim

or student employee)
q  Non CS students: Key Desk at Facilities

Management

8

3

Professional class behavior
n  We all have to have respect for each other,

independent of race, gender, ability

n  Laptop usage: use the back row of the class

n  THERE ARE NO STUPID QUESTIONS
q  Your classmates will be grateful you asked.
q  Questions outside of class: use Piazza rather

than emailing your instructor/TA

9

Cheating

n  What is cheating? What is not?
n  Where would you find a definition?

n  What is gained / lost when cheating?

n  What are the consequences?

n  When / how does it happen?
n  How can cheating be avoided?

10

First topic: Recap of CS160.

n  Lecture: Overview of Java program structure

n  Recitation: Write simple programs

n  Homework assignment 1: More recap

11

Reading values from a file
import java.io.*;
import java.util.*;
class FileReader1{
 public static void main(String[] args) throws IOException{
 String filename = "values.dat";
 Scanner in = new Scanner(new File(filename));

 int index = 0;
 int[] list = new int [9999];
 while(in.hasNext()){
 list[index] = in.nextInt();
 index++;
 }

 in.close();
 // do something with the array
 }

}

Issues with the code?

12

4

Methods
public class C2F {
 public static void main(String[] args){
 C2F converter = new C2F();
 System.out.print(“100C eq.”);
 System.out.print(converter.c2f(100) + “ F”);
 }

 public double c2f(double celsius) {
 return celsius * 9 / 5 + 32;
 }

}

Methods are discussed in section 5.1 in Savitch

parameter

argument

13

Primitive variables

n  When a primitive variable is assigned to another, the
value is copied.

n  Therefore: modifying the value of one does not affect
the copy.

n  Example:
 int x = 5;
 int y = x; // x = 5, y = 5
 y = 17; // x = 5, y = 17
 x = 8; // x = 8, y = 17

14

Primitive variables as method arguments
When primitive variables (int, double) are passed as arguments, their
values are copied. Modifying the parameter inside the method will not affect
the variable passed in.

public void caller() {
 int x = 23;
 strange(x);
 System.out.println("2. Value of x in caller = ” + x);
}

public void strange(int x) {
 x = x + 1;

 System.out.println("1. Value of x in strange = ” + x);
}

15

Primitive variables as method arguments
When primitive variables (int, double) are passed as arguments, their
values are copied. Modifying the parameter inside the method will not affect
the variable passed in.

public void caller() {
 int x = 23;
 strange(x);
 System.out.println("2. Value of x in caller = ” + x);
}

public void strange(int x) {
 x = x + 1;

 System.out.println("1. Value of x in strange = ” + x);
}

Output:
1. Value of x in strange = 24
2. Value of x in caller = 23

16

5

Reading values from a file (again)
import java.io.IOException;
Import java.io.File;

import java.util.Scanner;

class FileReader1{

 public static void main(String[] args) throws IOException{

 String filename = "values.dat";

 Scanner in = new Scanner(new File(filename));

 int[] list = new int [9999];

 int index = 0;
 while(in.hasNext()){

 list[index] = in.nextInt();

 index++;

 }

 in.close();

 // do something with the array

 }

}

Let’s improve this
version using methods!

17

import java.io.IOException;
import java.util.Scanner;

import java.util.Arrays;

class FileReader2{

 public static void main(String[] args) throws IOException {

 String filename = "values.dat";

 FileReader2 fileReader = new FileReader2();

 int [] values = fileReader.readFile(filename);
 System.out.println(Arrays.toString(values));

 }

 public int [] readFile(String filename) throws IOException {
 Scanner in = new Scanner(new File(filename));

 int index = 0;

 int[] list = new int [9999];

 while(in.hasNext()) {

 list[index] = in.nextInt();

 index++;

 }

 in.close();

 return list;

 }

}

18

import java.io.*;
import java.util.*;

class FileReader3 {

 public static void main(String[] args) throws IOException{

 String filename = "values.dat";

 FileReader3 fileReader = new FileReader3();

 int[] list = new int [9999];

 fileReader.readFile(filename, list);
 System.out.println(Arrays.toString(list));

 }

 public void readFile(String filename, int [] values) throws
 IOException {

 Scanner in = new Scanner(new File(filename));

 int index = 0;

 while(in.hasNext()) {

 values[index] = in.nextInt();

 index++;

 }

 in.close();

 }

}

19

Objects and the new operator

n  Compare
 int[] list = new int [9999];
 with
 int index = 0;

n  Why does one use the new operator while the
other doesn’t?

20

6

Objects and references

n  Object variables store the address of the object
value in the computer's memory.

n  Example:
 int [] values = new int[5];

 int x = 1;

values

x 1

5 7 10 6 3

21

Example
public static void main(String[] args) {
 int[] list = {126, 167, 95};
 System.out.println(Arrays.toString(list));
 doubleAll(list);
 System.out.println(Arrays.toString(list));

}

public void doubleAll(int[] values) {
 for (int i = 0; i < values.length; i++) {
 values[i] = 2 * values[i];
 }

}
q  Output:
 [126, 167, 95]
 [252, 334, 190] index 0 1 2

value 126 167 95

list

values

index 0 1 2

value 252 334 190

22

Variable scope

n  scope: The part of a program where a variable exists.
q  A variable's scope is from its declaration to the end of the { }

braces in which it was declared.
q  If a variable is declared in a for loop, it exists only in that loop.
q  If a variable is declared in a method, it exists only in that method.

public void example() {
 int x = 3;
 for (int i = 1; i <= 10; i++) {
 System.out.println(“i=“ + i + “x=“ + x);
 }
 // i no longer exists here
} // x ceases to exist here

23

Variable scope

n  It is illegal to try to use a variable outside of
its scope.

public void example() {
 int x = 3;
 for (int i = 1; i <= 10; i++) {
 System.out.println(x);
 }
 System.out.println(i); // illegal
}

24

7

Variable scope
n  It is legal to declare variables with the same name, as

long as their scopes do not overlap:

public static void main(String[] args) {
 int x = 2;

 for (int i = 1; i <= 5; i++) {
 int y = 5;
 System.out.println(y);
 }
 for (int i = 3; i <= 5; i++) {
 int y = 2;
 int x = 4; // illegal
 System.out.println(y);
 }
}

Public void anotherMethod() {
 int i = 6;
 int y = 3;
 System.out.println(i + ", " + y);
}

25

