
Java Iterators

Motivation
n  We often want to access every item in a collection

of items
q  We call this traversing or iterating
q  Example: array

 for (int i = 0; i < array.length; i++)
 /* do something with array[i] */

q  Easy because we know exactly how an array works!

Motivation

n  What if we want to traverse an arbitrary
collection of objects?
q  Its underlying implementation may not be known

to us
n  Java provides an interface for stepping

through all elements in any collection, called
an iterator

Iterating through an ArrayList
n  Iterating through an ArrayList of Strings:

for (int i = 0; i < list.size(); i++) {!
 String s = list.get(i); !
 //do something with s!
}!

n  Alternative:
Iterator<String> itr = list.iterator();!
while (itr.hasNext()) {!
 String s = list.next();!
}!

This syntax of iteration is generic and applies to any Java
class that implements the Iterator interface.

!
!
!

Iterating through an ArrayList
n  Iterating through an ArrayList of Strings:

for (int i = 0; i < list.size(); i++) {!
 String s = list.get(i); !
 //do something with s!
}!

n  Alternative:
Iterator<String> itr = list.iterator();!
while (itr.hasNext()) {!
 String s = list.next();!
}!

Advantage of the alternative: the code will work even if we
decide to store the data in a different data structure (as long
as it provides an iterator)

!
!

The Java Iterator Interface

n  Iterator<T>: a generic interface with the following
methods
q  public boolean hasNext();

returns true if there are more elements to iterate over
q  public T next();

returns the next element
q  public void remove();

removes the last element returned by the iterator
(optional operation)

n  It is in the java.util package
n  Which Java class that you know implement this interface?

The Java Iterator Interface

q  public boolean hasNext();
returns true if there are more elements to iterate over

q  public T next();
returns the next element
throws a NoSuchElement exception if a next element
does not exist

q  public void remove();
removes the last element returned by the iterator
optional operation: if you choose not to implement it,
the method needs to throw an
UnsupportedOperationException

The Java Iterator Interface
public interface Iterator<E> {
 /** Returns the next element. Throws a NoSuchElementException

 if there is no next element. **/

 public E next();

 /** Returns true if there is a next element to return. */

 public boolean hasNext();

 /** Removes the last element that was returned by next.
 Throws an UnsupportedOperationException if the remove method

 is not supported by this Iterator. Throws an

 IllegalStateException if the next method has not yet been

 called or if the remove method has already been called after

 the last call to the next method. */

 public void remove();
}

Using an iterator

ArrayIterator<Integer> itr = new
 ArrayIterator<Integer>(array);
while (itr.hasNext()){
 Integer element = itr.next();
}

Example: an array iterator
public class ArrayIterator<T> implements Iterator<T>{
 private int current;

 private T[] array;

 public ArrayIterator (T [] array){
 this.array = array;

 this.current = 0;

 }

 public boolean hasNext(){
 return (current < array.length);
 }

 public T next(){
 if (!hasNext())

 throw new NoSuchElementException();

 current++;

 return array[current - 1];

 }

}

The Iterable interface

Given an ArrayList we can traverse it using an iterator:!
Iterator<String> itr = list.iterator();!
while (itr.hasNext()) {!
 String s = list.next();!
}!

Or using the foreach form of the for loop:!
for (String s : list) {!
 //do something with s!
}!
!

The latter is possible because an ArrayList is iterable.

The Iterable interface

n  The Java API has a generic interface called
Iterable<T> that allows an object to be the
target of a “foreach” statement
q  public Iterator<T> iterator();

returns an iterator
n  Why do we need Iterable?

q  An Iterator can only be used once, Iterables can
be the subject of “foreach” multiple times.

public class MyArrayList implements Iterable {
 private Object [] array;
 // not shown: constructors and add/remove etc.

 public Iterator iterator() {
 Iterator itr = new ArrayIterator();
 return itr; }
 private class ArrayIterator implements Iterator {
 int current;
 public ArrayIterator (){
 this.current = 0;
 }

 public boolean hasNext(){
 return (current < array.length);
 }

 public Object next() {
 if (!hasNext())
 throw new NoSuchElementException();
 current++;

 return array[current - 1];
 }

 }

}

Inner classes

n  Inner class: defined inside another class
n  If declared private it can’t be used by other classes
n  The methods of the inner and outer classes have access

to each other’s methods and instance variables, even if
declared private.

Why use Iterators?

n  Traversing through the elements of a collection
is very common in programming, and iterators
provide a uniform way of doing so.

n  Advantage? Using an iterator, we don’t need to
know how the data structure is implemented!

