User Tools

Site Tools


start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
start [2024/10/10 10:27] – external edit 127.0.0.1start [2024/12/07 13:34] (current) – external edit 127.0.0.1
Line 33: Line 33:
 | Week 3:\\  Sept 3, 5  | Introduction to neural networks.   | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/05 Introduction to Neural Networks.ipynb|05 Introduction to Neural Networks]]  | [[https://www.3blue1brown.com/topics/neural-networks|3Blue1Brown Introduction to Neural Networks]] in the first five chapters provides a fun video tutorial including error backpropagation.  |   | | Week 3:\\  Sept 3, 5  | Introduction to neural networks.   | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/05 Introduction to Neural Networks.ipynb|05 Introduction to Neural Networks]]  | [[https://www.3blue1brown.com/topics/neural-networks|3Blue1Brown Introduction to Neural Networks]] in the first five chapters provides a fun video tutorial including error backpropagation.  |   |
 | Week 4:\\  Sept 10, 12   | Design of NeuralNetwork class. Optimizers. Overview of A2. Memory organization for neural network parameters. Optimizers tailored for neural networks.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/06 Python Classes.ipynb|06 Python Classes]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/07 Optimizers Simple.ipynb|07 Optimizers Simple]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/08 Collecting All Weights into One-Dimensional Vector for Use in Optimizers.ipynb|08 Collecting All Weights into One-Dimensional Vector for Use in Optimizers]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/08a Optimizers.ipynb|08a Optimizers]]   | [[https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/|Weight Initialization for Deep Learning Neural Networks]], by Jason Brownlee  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A1.ipynb|A1]] due Monday, September 9th, 10:00 PM.  | | Week 4:\\  Sept 10, 12   | Design of NeuralNetwork class. Optimizers. Overview of A2. Memory organization for neural network parameters. Optimizers tailored for neural networks.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/06 Python Classes.ipynb|06 Python Classes]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/07 Optimizers Simple.ipynb|07 Optimizers Simple]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/08 Collecting All Weights into One-Dimensional Vector for Use in Optimizers.ipynb|08 Collecting All Weights into One-Dimensional Vector for Use in Optimizers]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/08a Optimizers.ipynb|08a Optimizers]]   | [[https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/|Weight Initialization for Deep Learning Neural Networks]], by Jason Brownlee  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A1.ipynb|A1]] due Monday, September 9th, 10:00 PM.  |
-| Week 5:\\  Sept 17, 19\\ Chuck's office hours cancelled today.  | Introduction to Classification.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/09 Introduction to Classification.ipynb|09 Introduction to Classification]]    | | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A2 NeuralNetwork Class.ipynb|A2 NeuralNetwork Class]] due Thursday, September 19, 10:00 PM. Here is an example solution to A2: [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A2 NeuralNetwork Class Solution.ipynb|A2 NeuralNetwork Class Solution]]  |+| Week 5:\\  Sept 17, 19\\ Chuck's office hours cancelled today.  | Introduction to Classification.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/09 Introduction to Classification.ipynb|09 Introduction to Classification]]    | | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A2 NeuralNetwork Class.ipynb|A2 NeuralNetwork Class]] due Thursday, September 19, 10:00 PM. Here is an example solution to A2: [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A2 NeuralNetwork Class Solution.ipynb|A2 NeuralNetwork Class Solution]].\\ Examples of good A2 solutions from your classmates can be [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones/index.html|found here]]  |
 | Week 6:\\  Sept 24, 26  | Classification with Logistic Regression.   | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/10 Classification with Linear Logistic Regression.ipynb|10 Classification with Linear Logistic Regression]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/11 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|11 Classification with Nonlinear Logistic Regression Using Neural Networks]]   | | Week 6:\\  Sept 24, 26  | Classification with Logistic Regression.   | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/10 Classification with Linear Logistic Regression.ipynb|10 Classification with Linear Logistic Regression]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/11 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|11 Classification with Nonlinear Logistic Regression Using Neural Networks]]   |
  
Line 40: Line 40:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Lecture Notes  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Lecture Notes  ^  Reading          ^  Assignments  ^
-| Week 7:\\  Oct 1, 3  | Classification with Nonlinear Logistic Regression, K-Nearest-Neighbors. Clustering with K-Means.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/12 K-Means Clustering, K-Nearest-Neighbor Classification.ipynb|12 K-Means Clustering, K-Nearest-Neighbor Classification]]  | | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A3 NeuralNetwork Class Using Optimizers.ipynb|A3 NeuralNetwork Class Using Optimizers]] due Friday, October 4th, 10:00 PM. A3grader.zip is now available. |+| Week 7:\\  Oct 1, 3  | Classification with Nonlinear Logistic Regression, K-Nearest-Neighbors. Clustering with K-Means.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/12 K-Means Clustering, K-Nearest-Neighbor Classification.ipynb|12 K-Means Clustering, K-Nearest-Neighbor Classification]]  | | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A3 NeuralNetwork Class Using Optimizers.ipynb|A3 NeuralNetwork Class Using Optimizers]] due Friday, October 4th, 10:00 PM. A3grader.zip is now available. Examples of good A3 solutions from your classmates can be [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones/index.html|found here]]|
 | Week 8:\\  Oct 8, 10  | A4. Introduction to Reinforcement Learning.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/13 Introduction to Reinforcement Learning.ipynb|13 Introduction to Reinforcement Learning]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/14 Reinforcement Learning with Neural Networks as Q Function.ipynb|14 Reinforcement Learning with Neural Networks as Q Function]]  | [[https://www.nytimes.com/2024/10/08/science/nobel-prize-physics.html?campaign_id=9&emc=edit_nn_20241008&instance_id=136314&nl=the-morning&regi_id=78404199&segment_id=179882&te=1&user_id=d288e49a9a2fae84a8aae92c8c269127|John Hopfield and Geoffrey Hinton awarded Nobel Physics Prize]]\\ [[https://www.youtube.com/watch?v=N1TEjTeQeg0|Will digital intelligence replace biological intelligence?]]\\ [[https://www.youtube.com/watch?v=Y6Sgp7y178k|Geoffrey Hinton Warns of the “Existential Threat” of AI]]  | | Week 8:\\  Oct 8, 10  | A4. Introduction to Reinforcement Learning.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/13 Introduction to Reinforcement Learning.ipynb|13 Introduction to Reinforcement Learning]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/14 Reinforcement Learning with Neural Networks as Q Function.ipynb|14 Reinforcement Learning with Neural Networks as Q Function]]  | [[https://www.nytimes.com/2024/10/08/science/nobel-prize-physics.html?campaign_id=9&emc=edit_nn_20241008&instance_id=136314&nl=the-morning&regi_id=78404199&segment_id=179882&te=1&user_id=d288e49a9a2fae84a8aae92c8c269127|John Hopfield and Geoffrey Hinton awarded Nobel Physics Prize]]\\ [[https://www.youtube.com/watch?v=N1TEjTeQeg0|Will digital intelligence replace biological intelligence?]]\\ [[https://www.youtube.com/watch?v=Y6Sgp7y178k|Geoffrey Hinton Warns of the “Existential Threat” of AI]]  |
-| Week 9:\\  Oct 15, 17  | Reinforcement learning with Q Function as Neural Network. Learning to play games. |   |  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A4 Neural Network Classifier.ipynb|A4 Neural Network Classifier]] due Wednesday, October 16th, 10:00 PM.    | +| Week 9:\\  Oct 15, 17  | Reinforcement learning with Q Function as Neural Network. Learning to play games. | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/14 Reinforcement Learning with Neural Networks as Q Function.ipynb|14 Reinforcement Learning with Neural Networks as Q Function]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/15 Reinforcement Learning for Two Player Games.ipynb|15 Reinforcement Learning for Two Player Games]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/16 Targets and Deltas Summary.ipynb|16 Targets and Deltas Summary]]  |  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A4 Neural Network Classifier.ipynb|A4 Neural Network Classifier]] due Friday, October 18th, 10:00 PM.  Examples of good A4 solutions from your classmates can be [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones/index.html|found here]]    | 
-| Week 10:\\  Oct 22, 24  | Modular framework for reinforcement learning. Convolutional Neural Networks.     | |   | +| Week 10:\\  Oct 22, 24  | Modular framework for reinforcement learning. Parallel processing with ray. Introductions to Pytorch and Jax.   [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/17 Modular Framework for Reinforcement Learning.ipynb|17 Modular Framework for Reinforcement Learning]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/18 Ray for Parallel Processing.ipynb|18 Ray for Parallel Processing]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/19 More Tic-Tac-Toe and a Simple Robot Arm.ipynb|19 More Tic-Tac-Toe and a Simple Robot Arm]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/20 Introduction to Jax.ipynb|19 Introduction to Jax]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/21 Introduction to Pytorch.ipynb|21 Introduction to Pytorch]]  | [[https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/|President Biden's Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/Project Proposal and Report Example.ipynb|Project proposal]] due at 10 pm Friday evening, October 25th.   | 
-| Week 11:\\  Oct 29, 31  Pytorch.\\ Jax.\\ Ray     | [[https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/|President Biden's Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence]]  |   |+| Week 11:\\  Oct 29, 31  | A5.\\ Pytorch.\\ Convolutions.    | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/22 Introduction to Convolutional Neural Networks.ipynb|22 Introduction to Convolutional Neural Networks]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/23 Convolutional Neural Network in Numpy.ipynb|23 Convolutional Neural Network in Numpy]]  | [[https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710|Backpropagation for Convolution]] by Mayank Kaushik\\ [[https://pavisj.medium.com/convolutions-and-backpropagations-46026a8f5d2c|Convolutions and Backpropagations]] by Pavithra Solai    |
  
 ===== November ===== ===== November =====
Line 50: Line 50:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Lecture Notes  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Lecture Notes  ^  Reading          ^  Assignments  ^
-| Week 12:\\  Nov 5, 7  | Convolutional Neural Networks  | | +| Week 12:\\  Nov 5, 7  | Convolutional Neural Networks in Pytorch  [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/24 Convolutional Neural Network Class in Pytorch.ipynb|24 Convolutional Neural Network Class in Pytorch]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/25 CNN on One-Dimensional Data.ipynb|25 CNN on One-Dimensional Data]]   | | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A5 Pole Balancing with Reinforcement Learning.ipynb|A5 Pole Balancing with Reinforcement Learning]]  Due Friday, November 8th, 10:00 PM. Examples of good A5 solutions  can be [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones/index.html|found here]] 
-| Week 13:\\  Nov 12, 14  | Ensembles. Mixture of Experts  |     | +| Week 13:\\  Nov 12, 14  | Ensembles. AutoencodersRecurrent Neural Networks.  [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/26 Ensembles.ipynb|26 Ensembles]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/27 Autoencoders.ipynb|27 Autoencoders]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/28 Recurrent Networks in Numpy.ipynb|28 Recurrent Networks in Numpy]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/29 Recurrent Networks in Pytorch.ipynb|29 Recurrent Networks in Pytorch]]   |   | 
-| Week 14:\\  Nov 19, 21  | ClusteringK-Nearest NeighborsWeb Apps with Streamlit.  |   | [[https://www.nature.com/articles/d41586-023-03635-w|ChatGPT generates fake data set to support scientific hypothesis]]   |+| Week 14:\\  Nov 19, 21  | Word EmbeddingsTransformersSupport Vector Machines.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/30 Word Embeddings.ipynb|30 Word Embeddings]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/31 Introduction to Transformers.ipynb|31 Introdcution to Transformers]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/32 Support Vector Machines.ipynb|32 Support Vector Machines]]  | [[https://www.nature.com/articles/d41586-023-03635-w|ChatGPT generates fake data set to support scientific hypothesis]]\\ [[https://arxiv.org/pdf/2411.06469|ClinicalBench: Can LLMs Beat Traditional ML Models in Clinical Prediction?]]\\ [[https://www.statology.org/f1-score-vs-accuracy/|F1 Score vs. Accuracy: Which Should You Use?]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A6 Convolutional Neural Networks.ipynb|A6 Convolutional Neural Networks]] Due Saturday, November 23rd, 10:00 PM.      |
 | Fall Break:\\ Nov 25-29 | No classes.  | | Fall Break:\\ Nov 25-29 | No classes.  |
  
Line 59: Line 59:
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
 ^  Week      ^  Topic      ^  Lecture Notes  ^  Reading          ^  Assignments  ^ ^  Week      ^  Topic      ^  Lecture Notes  ^  Reading          ^  Assignments  ^
-| Week 15:\\  Dec 3, 5  | Word embeddings. Transformers.  |       | | +| Week 15:\\  Dec 3, 5  | Mixture of Experts.  Streamlit.   | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/33 Mixture of Experts.ipynb|33 Mixture of Experts]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/34 Drawing Digits.ipynb|34 Drawing Digits]]\\ \\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/35 Web Apps with Streamlit.ipynb|35 Web Apps With Streamlit]]   |     | | 
-| Dec 10-12  |  Final Exam Week  |  No Exams in this course  | |   |+| Dec 10-12  |  Final Exam Week  |  No Exams in this course  | | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/Project Proposal and Report Example.ipynb|Project Report]] due at 10 pm Wednesday evening, December 11th.   |
  
  
  
start.1728577633.txt.gz · Last modified: 2024/10/10 10:27 by 127.0.0.1