User Tools

Site Tools


schedule

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
schedule [2022/12/06 10:29] andersonschedule [2024/12/07 13:34] (current) – external edit 127.0.0.1
Line 7: Line 7:
 ***/ ***/
  
-/*** The following schedule is **tentative and is being updated**.  **/ +/***
 Please send your suggestions regarding lecture topics to Chuck using [[https://tinyurl.com/2nyfzc36|this Google Docs form]].  Questions regarding assignments should be entered in Canvas discussions. Please send your suggestions regarding lecture topics to Chuck using [[https://tinyurl.com/2nyfzc36|this Google Docs form]].  Questions regarding assignments should be entered in Canvas discussions.
 +***/
 + \\ 
 + \\ 
 + \\ 
 +
 +
 +
 +The following schedule is **tentative and is being updated**.
 +
 +All students may attend the lecture remotely using [[https://zoom.us/j/92107238733?pwd=Wggv0JQGepdeoezMRrv0gpVImn90yl.1|this zoom link]].
  
 ===== August ===== ===== August =====
  
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
-^  Week      ^  Topic      ^  Material   Reading          ^  Assignments +^  Week      ^  Topic      ^  Lecture Notes   Reading          ^  Assignments 
-| Week 1:\\  Aug 23256   | Overview of courseReview of neural networks training and use | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/01 Introduction to CS545.ipynb|01 Introduction to CS545]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/02 Searching for Good Weights in a Linear Model.ipynb|02 Searching for Good Weights in a Linear Model]]   | [[https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html|JupyterLab Introduction]], watch the video then play with jupyter lab.  \\ [[https://tinyurl.com/2qw45tlp|The Batch]] from DeepLearning.AI. YayColorado!     +| Week 1:\\  Aug 2022   | Course overview \\ Machine Learning and AI: History and Present Boom\\ Jupyter notebooks   | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/01 Introduction to CS545.ipynb|01 Introduction to CS545]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/01a Simple Animations.ipynb|01a Simple Animations]]\\  [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/02 Searching for Good Weights in a Linear Model.ipynb|02 Searching for Good Weights in a Linear Model]]    | [[https://jupyterlab.readthedocs.io/en/stable/getting_started/overview.html|JupyterLab Introduction]], watch the video then play with jupyter lab.  \\ [[https://www.freecodecamp.org/news/exploratory-data-analysis-with-numpy-pandas-matplotlib-seaborn/|What is Data Analysis? How to Visualize Data with Python, Numpy, Pandas, Matplotlib & Seaborn Tutorial]], by Aakash NSNot graded: Please fill out [[https://forms.gle/hppJ5QuRFuRn1L2h7|this anonymous survey]] before Thursday class.  
-| Week 2:\\  Aug 30Sept 1  Thursday lecture cancelled. Please watch pre-recorded lecture in Echo360Quiz1 and A1 questionsRegression with neural networks.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/03 Fitting Simple Models Using Gradient Descent in the Squared Error.ipynb|03 Fitting Simple Models Using Gradient Descent in the Squared Error]]   |[[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/Quiz1.ipynb|Quiz 1]] due Wednesday, August 31, 10:00 PM, in Canvas  | +| Week 2:\\  Aug 2729  Optimization algorithmsSimple linear and nonlinear models Confidence intervals  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/02 Searching for Good Weights in a Linear Model.ipynb|02 Searching for Good Weights in a Linear Model]] \\  [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/02a Input Importance and Generative AI---Friend or Foe.ipynb|02a Input Importance and Generative AI---Friend or Foe]] \\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/03 Fitting Simple Models Using Gradient Descent in the Squared Error.ipynb|03 Fitting Simple Models Using Gradient Descent in the Squared Error]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/04 Training Multiple Models to Obtain Confidence Intervals.ipynb|04 Training Multiple Models to Obtain Confidence Intervals]]   |    |
  
 ===== September ===== ===== September =====
  
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
-^  Week      ^  Topic      ^  Material   Reading          ^  Assignments +^  Week      ^  Topic      ^  Lecture Notes   Reading          ^  Assignments 
-| Week 3:\\  Sept 6 | Introduction to Neural Networks  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/04 Introduction to Neural Networks.ipynb|04 Introduction to Neural Networks]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/04a Simple Animations.ipynb|04a Simple Animations]]\\   | [[https://doi.org/10.1016/j.neucom.2022.06.111|Activation functions in deep learning: A comprehensive survey and benchmark]], Neurocomputing, volume 503, 2022, pp92-108    | +| Week 3:\\  Sept 3 | Introduction to neural networks.   | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/05 Introduction to Neural Networks.ipynb|05 Introduction to Neural Networks]]  [[https://www.3blue1brown.com/topics/neural-networks|3Blue1Brown Introduction to Neural Networks]] in the first five chapters provides a fun video tutorial including error backpropagation.  |   | 
-| Week 4:\\  Sept 1315\\   |  Python classes A2.    | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/04b Introduction to Python Classes.ipynb|04b Introduction to Python Classes]]  | [[https://docs.python.org/3/tutorial/classes.html|Classes Tutorial]] [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A1 Three-Layer Neural Network.ipynb|A1 Three-Layer Neural Network]] due Monday, Sept 12th, at 10:00 PM\\  [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/solutions/Anderson-Solution-A1.ipynb|Anderson-Solution-A1]]  | +| Week 4:\\  Sept 1012   | Design of NeuralNetwork class. OptimizersOverview of A2. Memory organization for neural network parameters. Optimizers tailored for neural networks.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/06 Python Classes.ipynb|06 Python Classes]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/07 Optimizers Simple.ipynb|07 Optimizers Simple]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/08 Collecting All Weights into One-Dimensional Vector for Use in Optimizers.ipynb|08 Collecting All Weights into One-Dimensional Vector for Use in Optimizers]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/08a Optimizers.ipynb|08a Optimizers]]   | [[https://machinelearningmastery.com/weight-initialization-for-deep-learning-neural-networks/|Weight Initialization for Deep Learning Neural Networks]], by Jason Brownlee [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A1.ipynb|A1]] due Monday, September 9th, 10:00 PM.  | 
-| Week 5:\\  Sept 20, 22  | Optimizers. Autoencoders. [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/05 Optimizers.ipynb|05 Optimizers]] \\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/05a Collecting All Weights into One-Dimensional Vector for Use in Optimizers.ipynb|05a Collecting All Weights into One-Dimensional Vector for Use in Optimizers]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/06 Autoencoders.ipynb|06 Autoencoders]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/06a Visualizing Weights.ipynb|06a Visualizing Weights]]   | [[https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf|Pandas Cheat Sheet]] [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A2 NeuralNetwork Class.ipynb|A2 NeuralNetwork Class]] due Thursday, Sept 22nd, at 10:00 PM\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/solutions/Anderson-A2-Solution.ipynb|Anderson-A2-Solution]]  | +| Week 5:\\  Sept 17, 19\\ Chuck's office hours cancelled today.  | Introduction to Classification. [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/09 Introduction to Classification.ipynb|09 Introduction to Classification]]    | | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A2 NeuralNetwork Class.ipynb|A2 NeuralNetwork Class]] due Thursday, September 19, 10:00 PMHere is an example solution to A2: [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A2 NeuralNetwork Class Solution.ipynb|A2 NeuralNetwork Class Solution]].\\ Examples of good A2 solutions from your classmates can be [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones/index.html|found here]]  | 
-| Week 6:\\  Sept 2729   A3Classification  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/07 Introduction to Classification.ipynb|07 Introduction to Classification]]   |  |+| Week 6:\\  Sept 2426  Classification with Logistic Regression  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/10 Classification with Linear Logistic Regression.ipynb|10 Classification with Linear Logistic Regression]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/11 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|11 Classification with Nonlinear Logistic Regression Using Neural Networks]]   |
  
 ===== October ===== ===== October =====
  
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
-^  Week      ^  Topic      ^  Material   Reading          ^  Assignments +^  Week      ^  Topic      ^  Lecture Notes   Reading          ^  Assignments 
-| Week 7:\\  Oct 4 | Classification. Convolutional neural networks.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/08 Classification with Linear Logistic Regression.ipynb|08 Classification with Linear Logistic Regression]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/09 Classification with Nonlinear Logistic Regression Using Neural Networks.ipynb|09 Classification with Nonlinear Logistic Regression Using Neural Networks]]  | [[https://spectrum.ieee.org/special-reports/the-great-ai-reckoning/|The Great AI Reckoning]] [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A3 NeuralNetwork Class Using Optimizers.ipynb|A3 NeuralNetwork Class Using Optimizers]] due Thursday, October 6th, at 10:00 PM.    +| Week 7:\\  Oct 1 | Classification with Nonlinear Logistic Regression, K-Nearest-NeighborsClustering with K-Means.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/12 K-Means Clustering, K-Nearest-Neighbor Classification.ipynb|12 K-Means Clustering, K-Nearest-Neighbor Classification]]  | | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A3 NeuralNetwork Class Using Optimizers.ipynb|A3 NeuralNetwork Class Using Optimizers]] due Friday, October 4th, 10:00 PMA3grader.zip is now available. Examples of good A3 solutions from your classmates can be [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones/index.html|found here]]| 
-| Week 8:\\  Oct 1113  PytorchConvolutional neural nets  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/10 JAX.ipynb|10 JAX]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/11 Convolutional Neural Networks.ipynb|11 Convolutional Neural Networks]]\\ [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/neuralnetworks_streamlit.tar|neuralnetworks_streamlit.tar]]\\ [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/CNN Backprop.pdf|CNN Backpropagation Notes]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/12 Introduction to Pytorch.ipynb|12 Introduction to Pytorch]]  [[https://moocaholic.medium.com/jax-a13e83f49897|JAX Ecosystem]]\\ [[https://streamlit.io/|Streamlit]]\\ [[https://www.deeplearning.ai/blog/acing-data-science-job-interview/?utm_campaign=The%20Batch&utm_medium=email&_hsmi=229461727&_hsenc=p2ANqtz-9bQj7qnAn_EuLfiAfXWztDKramW14RY0e9d9AEJEO_Xb-ABdnYZGPWanYADOLb_2B5GJup_AX4Qr_ge1C-iscdRBPZhAS2ruIHrOjnVo_NesAG0-s&utm_content=229461727&utm_source=hs_email|Breaking Into AI: Sahar Nasiri on Acing the Data Science Job Interview]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A4 Neural Network Classifier.ipynb|A4 Neural Network Classifier]] due Friday, October 14that 10:00 PM. A4 solution available [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/A4solution.tar|here as A4solution.tar]], and here are [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones|examples of good solutions.]]  | +| Week 8:\\  Oct 810  A4. Introduction to Reinforcement Learning.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/13 Introduction to Reinforcement Learning.ipynb|13 Introduction to Reinforcement Learning]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/14 Reinforcement Learning with Neural Networks as Q Function.ipynb|14 Reinforcement Learning with Neural Networks as Q Function]]  [[https://www.nytimes.com/2024/10/08/science/nobel-prize-physics.html?campaign_id=9&emc=edit_nn_20241008&instance_id=136314&nl=the-morning&regi_id=78404199&segment_id=179882&te=1&user_id=d288e49a9a2fae84a8aae92c8c269127|John Hopfield and Geoffrey Hinton awarded Nobel Physics Prize]]\\ [[https://www.youtube.com/watch?v=N1TEjTeQeg0|Will digital intelligence replace biological intelligence?]]\\ [[https://www.youtube.com/watch?v=Y6Sgp7y178k|Geoffrey Hinton Warns of the “Existential Threat” of AI]]  | 
-| Week 9:\\  Oct 18, 20  | Convolutional Neural Nets in PytorchReinforcement Learnirng  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/13 Convolutional Neural Networks in Pytorch.ipynb|13 Convolutional Neural Networks in Pytorch]] \\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/15 Introduction to Reinforcement Learning.ipynb|15 Introduction to Reinforcement Learning]]  [[https://arxiv.org/pdf/2210.08340.pdf|Toward Next-Generation Artificial Intelligence: Catalyzing the NeuroAI Revolution]]      +| Week 9:\\  Oct 15, 17  | Reinforcement learning with Q Function as Neural Network. Learning to play games. | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/14 Reinforcement Learning with Neural Networks as Q Function.ipynb|14 Reinforcement Learning with Neural Networks as Q Function]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/15 Reinforcement Learning for Two Player Games.ipynb|15 Reinforcement Learning for Two Player Games]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/16 Targets and Deltas Summary.ipynb|16 Targets and Deltas Summary]]   | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A4 Neural Network Classifier.ipynb|A4 Neural Network Classifier]] due Friday, October 18th, 10:00 PM.  Examples of good A4 solutions from your classmates can be [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones/index.html|found here]]    | 
-| Week 10:\\  Oct 2527  Reinforcement Learning  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/16 Reinforcement Learning with Neural Network as Q Function.ipynb|16 Reinforcement Learning with Neural Network as Q Function]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/17 Reinforcement Learning for Two Player Games.ipynb|17 Reinforcement Learning for Two Player Games]] | [[https://lastweekin.ai/p/190?utm_source=substack&utm_medium=email|Last Week in AI]] newsletter, with lots of topics for possible semester projects.\\ [[https://www.cell.com/neuron/fulltext/S0896-6273(22)00806-6#%20|Pong in a dish]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/Project Proposal and Report Example.ipynb|Project Proposal]], due Friday, October 28, 10:00 PM  |+| Week 10:\\  Oct 2224  | Modular framework for reinforcement learning. Parallel processing with ray. Introductions to Pytorch and Jax.   [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/17 Modular Framework for Reinforcement Learning.ipynb|17 Modular Framework for Reinforcement Learning]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/18 Ray for Parallel Processing.ipynb|18 Ray for Parallel Processing]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/19 More Tic-Tac-Toe and a Simple Robot Arm.ipynb|19 More Tic-Tac-Toe and a Simple Robot Arm]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/20 Introduction to Jax.ipynb|19 Introduction to Jax]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/21 Introduction to Pytorch.ipynb|21 Introduction to Pytorch]]  | [[https://www.whitehouse.gov/briefing-room/statements-releases/2023/10/30/fact-sheet-president-biden-issues-executive-order-on-safe-secure-and-trustworthy-artificial-intelligence/|President Biden's Executive Order on Safe, Secure, and Trustworthy Artificial Intelligence]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/Project Proposal and Report Example.ipynb|Project proposal]] due at 10 pm Friday evening, October 25th.   
 +| Week 11:\\  Oct 2931  A5.\\ Pytorch.\\ Convolutions.    | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/22 Introduction to Convolutional Neural Networks.ipynb|22 Introduction to Convolutional Neural Networks]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/23 Convolutional Neural Network in Numpy.ipynb|23 Convolutional Neural Network in Numpy]]  | [[https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710|Backpropagation for Convolution]] by Mayank Kaushik\\ [[https://pavisj.medium.com/convolutions-and-backpropagations-46026a8f5d2c|Convolutions and Backpropagations]] by Pavithra Solai    |
  
 ===== November ===== ===== November =====
  
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
-^  Week      ^  Topic      ^  Material   Reading          ^  Assignments +^  Week      ^  Topic      ^  Lecture Notes   Reading          ^  Assignments 
-| Week 11:\\  Nov 1 Reinforcement Learning for control dynamical systems.  Transfer learning in Reinforcement Learning.    | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/18 Reinforcement Learning to Control a Marble.ipynb|18 Reinforcement Learning to Control a Marble]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/19 Reinforcement Learning Modular Framework.ipynb|19 Reinforcement Learning Modular Framework]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/20 Reinforcement Learning to Control a Marble Variable Goal.ipynb|20 Reinforcement Learning to Control a Marble Variable Goal]]  [[http://www.cs.colostate.edu/~anderson/wp/pubs/pretrainijcnn15.pdf|Faster Reinforcement Learning After Pretraining Deep Networks to Predict State Dynamics]], [[https://ieeexplore.ieee.org/document/9533751|Increased Reinforcement Learning Performance through Transfer of Representation Learned by State Prediction Model]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A5 Convolutional Neural Networks.ipynb|A5 Convolutional Neural Networks]] due Friday, November 4th, at 10:00 PM.\\ Here are [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones|examples of good solutions.]]   | +| Week 12:\\  Nov 5 Convolutional Neural Networks in Pytorch  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/24 Convolutional Neural Network Class in Pytorch.ipynb|24 Convolutional Neural Network Class in Pytorch]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/25 CNN on One-Dimensional Data.ipynb|25 CNN on One-Dimensional Data]]   | | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A5 Pole Balancing with Reinforcement Learning.ipynb|A5 Pole Balancing with Reinforcement Learning]]  Due Friday, November 8th, 10:00 PM. Examples of good A5 solutions  can be [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/goodones/index.html|found here]] 
-| Week 12:\\  Nov 8, 10  | Brain-Computer Interfaces. Linear dimensionality reduction. | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/21 Linear Dimensionality Reduction with PCA.ipynb|21 Linear Dimensionality Reduction with PCA]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/22 Linear Dimensionality Reduction with Sammon Mapping.ipynb|22 Linear Dimensionality Reduction with Sammon Mapping]]  |  +| Week 13:\\  Nov 1214  | EnsemblesAutoencoders. Recurrent Neural Networks.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/26 Ensembles.ipynb|26 Ensembles]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/27 Autoencoders.ipynb|27 Autoencoders]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/28 Recurrent Networks in Numpy.ipynb|28 Recurrent Networks in Numpy]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/29 Recurrent Networks in Pytorch.ipynb|29 Recurrent Networks in Pytorch]]     
-| Week 13:\\  Nov 1517  Recurrent neural networks  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/23 Recurrent Neural Networks.ipynb|23 Recurrent Neural Networks]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/24 Recurrent Network Applications.ipynb|24 Recurrent Network Applications]]  [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A6 Reinforcement Learning to Control a Robot.ipynb|A6 Reinforcement Learning to Control a Robot]] due Friday, November 18th, at 10:00 PM.  | +| Week 14:\\  Nov 1921  Word EmbeddingsTransformers. Support Vector Machines.  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/30 Word Embeddings.ipynb|30 Word Embeddings]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/31 Introduction to Transformers.ipynb|31 Introdcution to Transformers]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/32 Support Vector Machines.ipynb|32 Support Vector Machines]]  | [[https://www.nature.com/articles/d41586-023-03635-w|ChatGPT generates fake data set to support scientific hypothesis]]\\ [[https://arxiv.org/pdf/2411.06469|ClinicalBenchCan LLMs Beat Traditional ML Models in Clinical Prediction?]]\\ [[https://www.statology.org/f1-score-vs-accuracy/|F1 Score vsAccuracy: Which Should You Use?]]  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/A6 Convolutional Neural Networks.ipynb|A6 Convolutional Neural Networks]] Due Saturday, November 23rd, 10:00 PM.      | 
-| Fall Break:\\ Nov 21-25 | +| Fall Break:\\ Nov 25-29 | No classes.  |
-| Week 14:\\  Dec 1  | K-means clusteringK-nearest-neighbor classification  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/25 K-Means Clustering, K-Nearest-Neighbor Classification.ipynb|25 K-Means Clustering, K-Nearest-Neighbor Classification]]   |+
  
 ===== December ===== ===== December =====
  
 |< 100% 18% 20% 22% 20% 20%  >| |< 100% 18% 20% 22% 20% 20%  >|
-^  Week      ^  Topic      ^  Material   Reading          ^  Assignments +^  Week      ^  Topic      ^  Lecture Notes   Reading          ^  Assignments 
-| Week 15:\\  Dec 6 GTA Saira Jabeen summarizes her research.  Support Vector MachinesIntroduction to Transformers  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/26 Support Vector Machines.ipynb|26 Support Vector Machines]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/27 Introduction to Transformers.ipynb|27 Introduction to Transformers]] |    |  +| Week 15:\\  Dec 3 Mixture of Experts.  Streamlit  | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/33 Mixture of Experts.ipynb|33 Mixture of Experts]]\\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/34 Drawing Digits.ipynb|34 Drawing Digits]]\\ \\ [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/35 Web Apps with Streamlit.ipynb|35 Web Apps With Streamlit]]   |     | 
-| Dec 12-16   Final Exam Week  |  No Exams in this course  | |[[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/Project Proposal and Report Example.ipynb|Project Report]]due Monday, December 12th, 10:00 PM [[https://www.cs.colostate.edu/~anderson/cs545/notebooks/titles.html|Here is a list of project titles and authors.]]   |+| Dec 10-12   Final Exam Week  |  No Exams in this course  | | [[https://nbviewer.org/url/www.cs.colostate.edu/~anderson/cs545/notebooks/Project Proposal and Report Example.ipynb|Project Report]] due at 10 pm Wednesday evening, December 11th.   |
  
  
  
schedule.1670347767.txt.gz · Last modified: 2022/12/06 10:29 by anderson