Solving Weighted Constraints with Applications
to Program Analysis

Ravi Mangal®, Xin Zhang!, Mayur Naik!, and Aditya Nori?

! Georgia Institute of Technology
2 Microsoft Research

Abstract. Systems of weighted constraints are a natural formalism for
many emerging tasks in program analysis and verification. Such systems
include both hard and soft constraints: the desired solution must satisfy
the hard constraints while optimizing the objectives expressed by the
soft constraints. Existing techniques for solving such constraint systems
sacrifice scalability or soundness by grounding the constraints eagerly,
rendering them unfit for program analysis applications. We present a lazy
grounding algorithm that generalizes and extends these techniques in a
unified framework. We also identify an instance of this framework that,
in the common case of computing the least solution of Horn constraints,
strikes a balance between the eager and lazy extremes by guiding the
grounding based on the logical structure of constraints. We show that our
algorithm achieves significant speedup over existing approaches without
sacrificing soundness for several real-world program analysis applications.

1 Introduction

Many emerging tasks in program analysis and verification require optimizing
certain objectives in addition to satisfying soundness conditions. These objec-
tives concern aspects such as tradeoffs between precision and cost [14, 15, 32],
assumptions about unknown information [1,12,13,18], and treatment of user
knowledge [6]. Motivated by such tasks, even existing verifiers have begun to
address optimization extensions of conventional logical problems [2,7,17].

A natural formalism for such tasks is a system of constraints in the form
of first-order inference rules with optional weights. Such a system allows both
hard (inviolable) constraints and soft (violable) constraints. The desired solution
satisfies all hard constraints while maximizing the sum of the weights of satisfied
soft constraints. Hard constraints thus enable to express soundness conditions
while soft constraints allow to express the objectives to be optimized.

Figure 1 shows an example of such constraint system that formulates a graph
reachability problem. Input predicate e(nq,ng) is true if the graph has an edge
from node ny to ng. Derived predicate p(ny,ng) is true if the graph has a path
from ny to ny. Hard constraints (1) and (2) enforce reflexitivity and transitivity
conditions respectively, while soft constraint (3) ensures that the desired solution
derives the least possible number of paths. The solution thus corresponds to the
least fixed-point solution to the graph reachability problem. An example input
and solution are shown in Figure 2.

Vni, p(ni,m1) 1)
A Vni,n2,ns, p(ni,n2) Ae(nz,ns) = p(ni, ns) (2)
N\ 1.5 :Yn1,n2, =p(ni,n2) (3)

Fig. 1. A graph reachability problem formulated using weighted constraints.

Input facts: Output facts:

O e(0,1) €(0,2) p(0,0) p(0,1)
(1) () e(1,3) e(1,4) p(0,2) p(0,3)
e(2,5) e(2,6) p(0,4) p(0,5)

Fig. 2. Example input and solution to the graph reachability problem.

The standard technique for solving such a constraint system involves two
phases. In the first phase, the constraints (which are expressed in first-order logic)
are grounded by instantiating the predicates or relations over all constants in the
corresponding input domains. In the second phase, the grounded constraints are
solved to produce a solution that satisfies all hard constraints and maximizes the
sum of the weights of satisfied soft constraints. This problem, called Weighted
Partial Maximum Satisfiability or MaxSAT), is computationally hard [24].

Producing tractable MaxSAT instances motivates the need to avoid ground-
ing constraints needlessly. Naive grounding can cause an exponential blow-up,
with respect to input size, in the number of constraints. For the example in Fig-
ure 1, naively grounding constraints (1)—(3) instantiates the quantifiers over all
nodes n in the graph. For instance, naively grounding constraint (2) results in
|N |3 grounded constraints where N is the domain of nodes in the graph.

Several techniques have been proposed to lazily ground constraints [5,11,22,
23]. Despite significant advances, however, these techniques produce instances
that at best take orders-of-magnitude more time to solve than afforded by tasks
in program analysis and verification, and at worst are well beyond the reach of
state-of-the-art MaxSAT solvers. For instance, a recent technique [5] grounds
hard constraints lazily and soft constraints naively. For the above example, this
generates |N|? constraints from grounding constraint (3). In comparison, a fully
lazy approach would only ground as many soft constraints as the number of
paths in the least fixed-point solution, as we show in Section 3.

More significantly, all prior techniques achieve scalability by sacrificing sound-
ness, that is, the solution they produce is not even guaranteed to satisfy all the
hard constraints. This is tolerable for applications in information retrieval and
machine learning that are the primary focus of existing techniques. Soundness,
however, is indispensable for our target application domain of program analysis
and verification, which renders existing techniques inapplicable.

We propose an iterative lazy grounding algorithm LGS that generalizes and
extends previous techniques in a unified framework. Starting with an initial set
of grounded constraints, LGS alternates between lazily grounding and invoking
an off-the-shelf MaxSAT solver to solve these grounded constraints. At the end
of each iteration, the solution produced by the solver is checked for violations

of any hard or soft constraint. Any violated constraint is instantiated with the
values that led to the violation and added to the set of grounded constraints to
be fed to the solver. This continues until no hard constraints are violated and
the weight of the produced solution stops changing.

LGS is parameterized by an initial grounding strategy that provides the set
of constraints to be grounded at the start of the iterative process. This set can
range from an empty set to the set of all constraints fully grounded, thereby
enabling the complete spectrum of choices from fully lazy to fully eager. We
prove that, for any set in this range, LGS produces an optimal and sound solution.
Moreover, in the case where all constraints are Horn clauses whose least solution
is desired, which is common for applications in program analysis and verification,
we identify a strategy that upfront grounds all constraints that will necessarily
be grounded during the iterative process. For instance, all the constraints in
the example in Figure 1 are Horn clauses, and our proposed strategy upfront
grounds constraints (1) and (2) into a set of constraints that would produce
the least solution as their answer. This strategy effectively strikes a balance
between the eager and lazy extremes by guiding the grounding based on the
logical structure of the constraints.

We evaluate LGS on 21 benchmarks resulting from applying three static anal-
yses (datarace detection, monomorphic call site inference, and downcast safety
checking) to seven large Java programs. We compare four instances of LGs:

— Eager: exhaustive initial grounding, that is, a fully eager approach [22];!
— SoftCegar (lazy for hard constraints only): a semi-lazy approach [5] that fully
grounds only soft constraints upfront;
— Lazy: no initial grounding, that is, our fully lazy approach; and
— Guided: our guided initial grounding.
Our Guided approach, on average, is 16 x faster than our Lazy approach while the
other approaches run out of memory.
In summary, our work makes the following contributions:

1. We present a lazy grounding algorithm that generalizes and extends previous
techniques for solving weighted first-order constraints in a unified framework.
We prove the optimality and soundness of our algorithm.

2. We identify an instance of our framework that strikes a balance between
the eager and lazy extremes in the case of Horn constraints by guiding the
grounding based on the logical structure of the constraints.

3. We evaluate the performance of our algorithm on realistic program analysis
applications. Our guided approach significantly speeds up the solving process
for these applications without sacrificing soundness.

2 Preliminaries

Our goal is to take weighted constraints such as those in the graph reachability
example in Figure 1, conjoin them with extensional predicates (EDB) such as

! Although fully eager, this approach is not equivalent to naive grounding and em-
ploys optimizations. See Section 5 for details.

Grounded constraints:

MaxSAT formula:

Hard clauses: e(0,1) A b0 A

e(0,2) A bl A

p(0,0) A b2 A

p(1,1) A b3 A

(=p(0,0) vV —=e(0,1) vV p(0,1)) A (=02 VvV =b0 V b4) A
(=p(0,1) v —e(1,3) vV p(0,3)) A ... (b4 vV =b5 V b6) A ...

Soft clauses: 1.5: (—p(0,1)) A 1.5: (=b4) A

1.5: (=p(1,1)) A ... 1.5: (=b3) A

Fig. 3. Example grounded constraints and corresponding MaxSAT formula.

the edge relation e in Figure 2, and compute intensional predicates (IDB) such as
the path relation p in Figure 2. We seek to develop an iterative ground-and-solve
approach that consists of two phases in each iteration: grounding followed by
solving. The grounding phase grounds a subset of the given constraints on the
EDB. A sample result of this phase for our graph reachability example is the
grounded constraints shown on the left in Figure 3. The solving phase converts
these grounded constraints into a MaxSAT formula, solves it using an off-the-
shelf MaxSAT solver, and maps the solution to the IDB. The MaxSAT formula
produced from the grounded constraints in Figure 3 is shown in the same figure
on the right. The remainder of this section introduces the setting for these two
phases and our overall approach.

We begin by defining the abstract syntax of weighted constraints, shown in
Figure 4. A system of weighted constraints C' consists of a set of hard constraints
H and a set of soft constraints S.

A hard constraint h € H is an inference rule A = B, where A is a conjunction
of facts and B is a disjunction of facts. A fact t comprises a relation name and
a tuple of arguments, which include variables and constants; a fact is a ground
fact g when all arguments are constants.

A soft constraint s € S is a hard constraint along with a positive real weight
w. A weight has a natural probabilistic interpretation, where the confidence
associated with a soft constraint increases with the weight. For more details on
the precise semantics of weights, the reader is referred to [8].

For convenience in formulating program analysis and verification tasks, we
augment the constraint system with an input P which is a set of ground facts
that comprise the EDB. The solution to the constraints, output Q, represents the
set of ground facts that comprise the IDB. For instance, the input can encode
the program being analyzed, while the output can represent the analysis result.

Example. The graph reachability problem applied to the graph in Figure 2 can
be formulated as a system of weighted constraints (H,S) where H comprises
hard constraints (1) and (2) in Figure 1, and S comprises soft constraint (3)
with an arbitrary weight of 1.5. Further, the input P comprises all ground facts
in relation e(ni,n2), denoting all edges in the graph, while output ¢ comprises
all ground facts in relation p(n1,ns), denoting all paths in the graph. O

(relation) r € R (argument) a € A=VUC
(constant) ce€ C (fact) te T=R x A"

(variable) v € V (ground fact) g€ G=R x C*
(valuation) 0 € V= C (weight) w € R+ = (0, o0]

(hard constraints) H == {h1,...,hn}, h = A[_, ti = Vo, &
(soft constraints) S = {s1,...,sn}, s = (h,w)
(weighted constraints) C == (H,S)

(input, output) P,Q C G

Fig. 4. Abstract syntax of weighted constraints.

[(H,9)] = ([H],[S])
[[{h17 0 h"}]] = /\?:1 [[hl]]
[[{517 E) Sn}]] = /\:Ln:l [[Slﬂ
[r] = AslR]s
[[(ha w)]] = /\g([[h']]07 w)
Nt = Vit e = (Vis, ~[tde v VL, [E]0)
[r(a1,...;an)]e = r([a1]s, -, [an]s)
[v]e = o(v)
[co =¢
(ground clause) p ::= V1 —g;: VVie, gi
(hard clauses) ¢ ::== A\, ps
(soft clauses) ¢ ::= A_, (pi, wi)

Fig. 5. From weighted constraints to ground clauses.

We now describe the grounding phase. Weighted constraints are grounded by
instantiating the predicates or relations over all constants in the corresponding
input domains. The grounding procedure is shown in Figure 5. The procedure
grounds each weighted constraint into a set of corresponding clauses. In partic-
ular, the conversion [h] = A_[h], grounds hard constraint h by enumerating
all possible groundings ¢ of variables to constants, yielding a different clause for
each unique valuation to the variables in h. Enumerating all possible valuations,
called full grounding, does not scale to real-world programs and analyses.

Example. Figure 3 shows a subset of the ground clauses constructed for the
constraints from Figure 1 applied to the graph in Figure 2. Along with the input
ground facts from relation e(ni,ns), hard constraints (1) and (2) in the graph
reachability problem are grounded to construct the shown set of hard clauses,
while soft constraint (3) is grounded to produce the shown set of soft clauses. O

We next describe the solving phase. The ground clauses are solved to produce
a solution that satisfies all hard clauses and maximizes the sum of the weights of
satisfied soft clauses. This problem is called Weighted Partial Maximum Satisfi-
ability or MaxSAT [24]. In the solving process, ground clauses are first converted
into a boolean MaxSAT formula by replacing each unique ground fact with a
separate boolean variable. The MaxSAT procedure in Figure 6 then takes this

UNSAT if3Q: QE¢

MaXSAT(QSa/\?: (plawz)) = Q): (’b and
' {Q such that [Z{Ll{wi | Q@ E pi} is maximized

otherwise
Q FE AL pi iff Vi:Q = ps
Q E V?:lﬁgi\/\/z.llgg iff Ji:g.¢QorJ:g,eq
weight(Q, AiL, (pi,wi)) = T {wi | QFpi}
Violations(h,Q) = {[h]o | Q ¥ [h]o }

Fig. 6. Specification of solving MaxSAT formulae.

formula, comprising a set of hard clauses ¢ and a set of soft clauses v, as input.
The procedure returns either: (1) UNSAT, if no assignment of truth values to the
boolean variables satisfies the set of hard clauses ¢, or (2) a solution @, denot-
ing the assignment “A\g.(g € Q) ? true:false” that sets variables corresponding to
ground facts contained in @ to true, and the rest to false. Solution) not only
satisfies all hard clauses in ¢ (it is sound) but it also maximizes the sum of the
weights of satisfied soft clauses in ¢ (it is optimal). @ is not necessarily unique;
two solutions @ and Qs are equivalent if weight (Q1,v) = Weight(Q2,v). Many
off-the-shelf MaxSAT solvers implement the above procedure.

Example. Figure 3 shows a snippet of the MaxSAT formula constructed for the
system of weighted constraints from Figure 1 applied to the graph in Figure 2.
The formula is constructed from the grounded hard and soft clauses, shown in
the same figure, by replacing each unique ground fact with a separate boolean
variable. It is then fed to a MaxSAT solver to generate the final solution Q. O

Recall that full grounding is infeasible in practice. In the following section,
we propose an iterative lazy grounding technique that grounds and solves only
a subset of constraints in each iteration. The Violations procedure in Figure 5
is invoked by our technique to find any constraints violated by the solution in
each iteration. This procedure take as input a hard constraint h and a MaxSAT
solution (), and returns all grounded instances of h that are violated by Q.

Example. Let h denote the constraint p(ny,ns) Ae(ng, ng) = p(ni, ng) from our

example in Figure 1. If the MaxSAT solution is @ = {p(0,0)}, then we have:
Violations(h,Q) = {(-p(0,0)V —e(0,1) Vv p(0,1))}

In this case, all grounded instances of the constraint are satisfied by the solution

Q@ except the instance shown above. O

There are many ways to implement the above procedure, including via SMT
and Datalog solvers; we follow existing techniques [22,23] and implement it using
SQL queries that can be executed by an off-the-shelf RDBMS.

Example. Consider the constraint —p(ni,n2) V —e(ng, ng) V p(ni, ns) from the
graph reachability example in Figure 1. The SQL query to find violations of this
constraint by a solution p(ny,ng) is:

SELECT DISTINCT P.cl, P.c2, E.c2 FROM p AS P, e AS E
WHERE (P.c2 = E.cl AND (NOT EXISTS (

SELECT * FROM p

WHERE p.cl = P.cl AND p.c2 = E.c2)))

This SQL query assumes that the database has a table for each relation specified
in the constraints, and the table columns are named c1 through cM where M is
the number of domains in a relation. O

3 LGS: A Ground-and-Solve Framework

We propose a framework 1.Gs for solving systems of weighted constraints. The
framework, described in Algorithm 1, has the following key features:

1. LGS generalizes and extends existing techniques for solving weighted con-
straints in a lazy, iterative manner. In addition to a fully lazy approach that
starts from an empty set of grounded constraints, 1L.GS allows starting from
any non-empty set of initial grounded constraints to accelerate convergence
while guaranteeing to produce a sound, optimal result equivalent to the full
grounding solution (Theorem 1). In contrast, all existing techniques forgo
this guarantee (see related work in Section 5).

2. In the case where all constraints are Horn clauses whose least solution is
desired, LGS exploits the logical structure of the constraints to produce an
initial grounding that is optimal (Theorem 2).

3. LGS provides maximum flexibility, lazily grounding both soft and hard con-
straints. On the other hand, existing techniques typically only allow hard
constraints to be ground lazily (see Section 5).

LGS takes a weighted constraint system (H,S) as input and produces a
boolean assignment Q. ' 1.GS also takes as input a grounding strategy @, which
can be Eager, Lazy, Guided, or Intermediate. The choice of this strategy only
affects scalability and does not affect the soundness or optimality of @Q; in par-
ticular, in Theorem 1, we prove that all these strategies yield a final output
that is equivalent to Q. Strategy Eager corresponds to full grounding, a base-
line which does not use a lazy approach. Strategy Intermediate corresponds to
using a subset of the full grounded set of constraints as the initial set. The other
two strategies, Lazy and Guided, are instances of our lazy iterative technique.
These two strategies differ only with respect to how they construct the initial
grounding, which is presented in Algorithm 2.

In line 4, 1.GS invokes the InitialGrounding procedure (described in Algo-
rithm 2) with an input grounding strategy 6 to compute an initial set of hard
clauses ¢ and soft clauses 1. For the case when 6 = Eager, the MaxSAT solution
to a full grounding of ¢ and 1 is returned (line 5). Otherwise, LGS enters the loop

We assume that any input P is encoded as part of the hard constraints H. For
clarity, we also assume that the hard constraints H are satisfiable, allowing us to elide
showing UNSAT as a possible alternative to output Q.

Algorithm 1 1.Gs: the ground-and-solve framework.
PARAM 0 € { Eager, Lazy, Guided, Intermediate }: Grounding strategy.
INPUT (H,S): Weighted constraints.
OUTPUT Q: Solution (assumes [H] is satisfiable).
(¢,¢) := InitialGrounding(f, H,S)
if (0 = Eager) then return MaxSAT(¢,)
Q:=0;, w:=0
while true do
¢ := Npey A\ Violations(h,Q)
P = /\(h,w)es N{ (p,w)|p € Violations(h,Q)}
(9,9) == (AP b ANY)
Q' = MaxSAT(¢,)
w' = Weight(Q',)
if (w’' = w A ¢’ = true) then return Q
Q=Q; w:==uw

: end while

el el el
AN I el =N

defined in lines 7-15. In each iteration of the loop, the algorithm keeps track of
the previous solution @, and the weight w of the solution @ by calling the weight
procedure specified in Figure 6. Initially, the solution is empty with weight zero
(line 6). In line 8, LGS computes all the violations of the hard constraints for the
previous solution Q. Similarly, in line 9, the set of soft clauses v’ violated by the
previous solution @ is computed. In line 10, both sets of violations ¢’ and)’ are
added to the corresponding sets of grounded hard clauses ¢ and grounded soft
clauses 1) respectively. The intuition for adding violated hard clauses ¢’ to the
set ¢ is straightforward—the set of hard clauses ¢ is not sufficient to prevent
the MaxSAT procedure from producing a solution () that violates the set of hard
constraints H. The intuition for soft clauses is similar—since the goal of MaxSAT
is to maximize the sum of the weights of satisfied soft constraints in S, and all
weights in our weighted constraint system are positive, any violation of a soft
clause possibly leads to a sub-optimal solution which could have been avoided if
the violated clause was present in the set of soft clauses .

In line 11, this updated set ¢ of hard clauses and set 1 of soft clauses are
fed to the MaxSAT procedure to produce a new solution @’ and its corresponding
weight w’. At this point, in line 13, the algorithm checks if the terminating con-
dition is satisfied by the solution @’. Theorem 1 states that our 1.Gs algorithm
always terminates with a sound and optimum solution. The termination condi-
tion ensures that the current solution satisfies all the hard clauses (¢’ = true)
while ensuring that there is no benefit in adding any new soft clauses (w = w’).
The proof of the theorem is provided in Appendix A.

Theorem 1. (Soundness and Optimality of LGS) For any weighted con-
straint system (H,S) where H is satisfiable, 1.GSo(H,S) produces equivalent re-
sults under 6 = Eager, 6 = Lazy, 8 = Guided, and 6 = Intermediate.

The initial grounding used by 1GS is computed by Algorithm 2. It takes a
weighted constraint system (H,S) and initial grounding strategy 6 as inputs.

Algorithm 2 InitialGrounding

1: INPUT 0 € { Eager, Lazy, Guided }: Grounding strategy.
2: INPUT (H, S): Weighted constraints.

3: OUTPUT (¢,): Initial grounding of weighted constraints.
4: switch (0)

5: case Eager: return [(H,S)]

6: case Lazy: return (true, true)

7: case Guided:

8 ¢ :=any A\, pi such that Vi:3h € H:3o:p; = [h]o
9: return (¢, true)

10: case Intermediate:

11: ¢ :=any A]_, pi such that Vi:3h € H:3o:p; = [h]o
12: 4 := any A]_, ps such that Vi:3s € S:30:p; = [s]o
13: return (¢,v)

14: end switch

If the Eager grounding strategy is used, the algorithm enumerates all possible
groundings for the constraints, yielding a MaxSAT clause for every possible val-
uation of the variables in a constraint. In practice, this produces an intractably
large number of clauses. On the other hand, a Lazy grounding strategy results in
no clauses being grounded initially. The algorithm simply returns an empty set
for both hard clauses ¢ and soft clauses 1. The Intermediate strategy operates
between the two extremes of Eager and Lazy grounding: it picks a valid subset
of grounded hard clauses as the initial set ¢ and a valid subset of grounded
soft clauses as the initial set 1. The Guided strategy is a special case of the
Intermediate strategy: it picks a valid subset of grounded hard clauses as the
initial set ¢ while continuing to have an empty initial set of soft clauses. In par-
ticular, when the hard constraints in the weighted constraint system are Horn
rules, the Guided strategy prescribes a recipe for generating an optimal initial
set of grounded constraints.

In Theorem 2, we show that for Horn constraints, the Lazy strategy grounds
at least as many hard clauses as the number of true ground facts in the least
solution of such Horn rules. Also, and more importantly, we show there exists
a Guided strategy that can upfront discover the set of all these necessary hard
clauses that are grounded by the Lazy strategy and guarantee that no more
clauses, besides those in the initial set, will be grounded. In practice, for con-
straints with Horn hard rules, using this Guided strategy for initial grounding
allows the iterative process to terminate in far fewer iterations while ensuring
that each iteration does approximately as much work as when using the Lazy
strategy. The proof of the theorem is provided in Appendix B.

Theorem 2. (Optimal Initial Grounding for Horn Rules) If a weighted
constraint system is constituted of a set of hard constraints H, each of which is
a Horn rule /\?:1 t; = to, whose least solution is desired:

G =1Ifp A\G". G' U { [tols | (N_yt; = to) € H and Vi € [1..n]: [t;], € G },

Iteration 1 Iteration 2 Iteration 3 Iteration 4
-p(0,0) vV —e(0,1) V p(0,1)
p(0,0) | POOVel0D VPO g 4y 1,3 v p(0,3)
_‘p(17 1) v _‘6(17 3) \/p(l, 3)
p(lvl) _‘p(O, 1) \/“6(1,4) \/p(0,4)
-p(1,1) v —e(1,4) Vv p(1,4) 1.5 : =p(0,3)
p(272) —\p(O,Q) v _‘6(275) \/p(0,5)
_‘p(272) \ _‘6(275) \/p(275) 1.5: _‘p(074)
p(373) _‘p(072) N _‘6(276) \/p(O,G)
_‘p(272) N _‘6(276) \/p(276) 1.5: _‘p(075)
p(4,4) 1.5:-p(0,1) 1.5:-p(0,2)
1.5:-p(0,0) 1.5:-p(1,1) 1.5 : =p(0, 6)
p(5,5) 1.5:-p(1,3) 1.5:-p(1,4)
p(6.6) |12 P22 L5op(3) 1y ST s p(2.6)
’ 1.5:-p(4,4) 1.5:-p(5,5) | "~ ’ T ’
1.5: —p(6,6)

Table 1. Additional clauses grounded in each iteration for graph reachability example.

then for such a system, (a) LGSo—Lazy(H, D) grounds at least |G| clauses, and (b)
L.GSp=Guided (H, 0) with the initial grounding ¢ does not ground any more clauses:

o =N Viei ~[tilo v [tolo | (Ni2yti = to) € H and Vi € [0..n]: [t;i], € G }.

We illustrate the differences between the Eager, Lazy and Guided strategies via
our graph reachability example described in Figures 1 and 2. The Eager strategy
converts the weighted constraints into MaxSAT clauses by naively enumerating
all possible valuations of the variables in a constraint. This results in many
clauses that are trivially satisfiable and thus, play no effective role in influencing
the final solution. For our graph example, Eager grounding generates clauses
such as —=p(0,1) V —e(1,5) V p(1,5) and —p(1,4) V —e(4,2) V p(1,2), that are
trivially satisfied given the input edge relation.

The Lazy strategy, on the other hand, uses the lazy, iterative process and,
in each iteration, grounds only those clauses that are violated by the current
MaxSAT solution. Table 1 progressively shows the MaxSAT clauses that are
grounded in each iteration for our graph example. Initially, the set of grounded
clauses is empty. The process ends when all the necessary clauses are grounded
and the optimal solution is produced.

Finally, the Guided strategy accelerates the Lazy grounding process by ground-
ing a subset of hard clauses upfront. As shown in Theorem 2, for Horn con-
straints, the Guided strategy grounds only those hard clauses that appear in
the least fixed point solution of these constraints. For our graph example, this
implies that the Guided strategy upfront grounds all the hard clauses in Table 1.

4 Empirical Evaluation

We evaluate LGS on 21 benchmarks resulting from applying three program anal-
yses to seven large Java programs. All our experiments were done using Oracle
HotSpot JVM 1.6.0 on a Linux server with 64GB RAM and 3.0GHz processors.

Table 2 shows statistics of three Java programs (antlr, avrora, lusearch)
from the DaCapo suite [3], each comprising 131-198 thousand lines of code.

10

brief description # classes |# methods|bytecode (KB)|source (KLOC)
app |total| app |total| app | total app | total
microbench|stack data-structure implementation 2 5 9 15| 0.3 0.4 0.1 1.4
antlr parser/translator generator 111 350(1,150{2,370| 128 186 29 131
avrora microcontroller simulator/analyzer |1,158(1,544/4,234(6,247| 222 325 64 193
lusearch [text indexing and search tool 219| 640(1,399|3,923| 94 250 40 198

Table 2. Characteristics of our benchmark programs. Columns “total” and “app”
report numbers with and without counting Java standard library code, respectively.

total constraints|hard constraints|input relations{output relations
polysite 76 12 50 42
downcast 7 12 51 43
datarace 30 5 18 18

Table 3. Statistics of our program analyses.

For the sake of brevity, we report the statistics and evaluation results for the
additional four programs in Appendix C.

Table 3 describes our three analyses: monomorphic call site inference (polysite),
downcast safety checking (downcast), and datarace detection (datarace). The
polysite and downcast analyses involve computing the program call-graph and
points-to information, and have been used in previous works [16,30,32] to eval-
uate pointer analyses. The datarace analysis is from [21] and includes thread-
escape and may-happen-in-parallel analyses. All constraints in these analyses
are Horn rules. Each analysis is sound but incomplete. The hard constraints
express the soundness conditions of the analysis. The soft constraints influence
the analysis precision and scalability by encoding tradeoffs between different
abstractions and incorporating user knowledge about analysis outcomes.

Our evaluation considers four different initial grounding strategies: (1) Eager:
exhaustive initial grounding, that is, a fully eager approach as implemented by
TUFFY [22]; (2) SoftCegar: a semi-lazy approach [5] that fully grounds only soft
constraints upfront; (3) Lazy: no initial grounding, that is, our fully lazy ap-
proach; and (4) Guided: our guided initial grounding. All these approaches can
be viewed as instances of our LGS algorithm. To implement the Eager approach,
we replace the call to the MaxSAT solver on line 5 of Algorithm 1 with a call to
TUFFY, a non-iterative solver for weighted constraints. TUFFY employs the Eager
approach but uses optimizations to accelerate the solving process. To implement
the SoftCegar approach, we replace the call to the MaxSAT solver on line 11 of Al-
gorithm 1 with a call to TUFFY, with grounded hard constraints but ungrounded
soft constraints. Essentially, the hard constraints are grounded lazily by our itera-
tive algorithm while soft constraints are grounded by TUFFY in an eager manner.
Note that the Eager and SoftCegar approaches sacrifice soundness for perfor-
mance, and are unsuitable for program analysis applications. To compute the
initial grounded hard constraints in the Guided strategy, we use bddbddb [31],
a Datalog solver. For the MaxSAT procedure invoked by the Lazy and Guided
approaches, we use MCS1s [19], a MaxSAT solver that guarantees soundness.

11

total total time # ground
|EDB]| ground |# iterations| (hh:mm) |clauses(x10°)||IDB]
analysis| program |(x10°)| clauses |Lazy|Guided| Lazy [Guided|Lazy| Guided |(x10°)
A [antlr 8.212.9x10%°| 167 7115:34] 1:12] 12 13 8.7
0\«;‘5 avrora 1811.8x10% | 157 8129:02| 2:04| 15 17 12
) lusearch 10(1.2x10%°| 173 8[13:03| 1:12] 10 11 7.8
& lantlr 8.212.9x10%°| 159 9[18:36] 1:41] 13 15 9.4
& |avrora 181.8x10%" | 191 9[41:07| 2:41| 16 18 11
¥ lusearch 10(1.2x10%°| 192 9(22:12| 1:32] 11 12 8.1
& |antlr 1.6]2.4x10%*| 751 4| 3:02] 0:05] 0.2 0.3 0.2
& |avrora 2.6(1.8x10%° | 492 12| 6:31| 0:25| 0.8 1.6 0.7
¥ lusearch 1.61.7x10%° | 429 6| 2:38| 0:14| 0.6 1.0 0.5

Table 4. Evaluation of LGS on program analysis applications.

Table 4 summarizes the results of running LGS with the Lazy and Guided
strategies on our benchmarks. The Eager and SoftCegar approaches run out of
memory for all the problem instances above. Basically both these approaches are
too aggressive in their grounding strategy despite the optimizations used by tools
like TUFFY. Though these approaches have been successfully used for information
retrieval applications, the nature of those applications allows approximations
that are not acceptable for program analysis applications.

The {|EDB|’ column in the table shows the number of input ground facts for
the given system of weighted constraints. The input facts encode the analyzed
program in terms of relations that are relevant to the program analysis being
applied. The large size of the EDB (average of 8.6 x 10° facts) reflects the fact
that real-world programs are being analyzed using sophisticated analyses.

The ‘total ground clauses’ column reports the theoretical upper bound for
the number of ground clauses if all the constraints were grounded naively. It is
clear from the numbers that any approach attempting to tackle problems of this
scale needs to employ lazy techniques for solving the constraints.

The next two columns show the number of iterations, and the total running
time of our Lazy and Guided approaches for solving the weighted constraints. The
reported running time is the end-to-end time including all the phases involved in
solving these constraints. For the Guided approach, this includes the time needed
for generating the initial set of ground clauses. For all benchmarks, the Guided
strategy clearly outperforms the Lazy strategy with an average speedup of 16x.
This is consistent with the fact that, on average, the Guided approach needs
47x fewer iterations than the Lazy approach. The higher drop in the number of
iterations compared to the drop in running time is attributable to the fact that,
on average, the Guided approach needs more time per iteration (in Table 4 this
is ‘total time’ divided by ‘# of iterations’). This is primarily because the Lazy
approach starts with an empty initial grounded set and thereby, the average
size of the MaxSAT problem solved by this approach is smaller than for the
Guided approach. Note that the datarace analysis benefits more from using the
Guided approach compared to the other analyses. This is primarily due to the

12

polysite downcast datarace

600} R 7001 R

50}

500} { 600 1 40l
§ 400t 1 g 300 18

c c [1 € 30
o S 400 S
9 3001 R 8

) n 20

=
o
T

o
% 300} 1 L T _
200} 1 200l |
100 1 100} : ? |

L L L O L L L 0 L L L
antlr avrora lusearch antlr avrora lusearch antlr avrora lusearch

Fig. 7. MaxSAT solver time per iteration for the Guided approach. The boxes extend
from the lower to upper quartile values of the iteration times, with a line at the median
value. The solid lines extend from the boxes to show the range of the iteration times.

fact that the datarace analysis has fewer constraints that the others (Table 4).
As a result, the Guided approach is able to generate most of the required ground
clauses upfront for this analysis.

The ‘# ground clauses’ column indicates the distinct number of clauses
grounded by the Lazy and Guided approaches in the process of solving the weighted
constraints. In other words, it indicates the size of the problem fed to the
MaxSAT solver in the last iteration of the LGS algorithm. The higher num-
ber of ground clauses for the Guided strategy in comparison to the Lazy one is
along expected lines. Theorem 2 states that the initial grounded set used by the
Guided is inclusive of the ground clauses generated by the Lazy strategy.

Finally, the last column shows the size of the IDB, that is, the number of
ground facts in the solution produced by LGS. The Lazy and the Guided strategies
produce the same number of IDB facts, consistent with Theorem 1.

Figure 7 plots the time consumed by the MaxSAT solver in each iteration
using the Guided approach. The maximum MaxSAT time of 693 seconds arises for
one of the iterations of downcast on avrora. More generally, the average running
time per iteration, across the nine benchmarks shown here, is 227 seconds. This
successfully demonstrates that even for large, real-world programs our technique,
in conjunction with the Guided strategy, generates MaxSAT instances that are
small enough to be handled by existing solvers. The running times look very
similar for the Lazy approach with a maximum MaxSAT time of 1,089 seconds
for a particular iteration of downcast on avrora, and an average of 160 seconds.
We omit the corresponding graph for the sake of brevity.

Due to the inability of the Eager and SoftCegar approaches to scale to real-
world programs, we evaluate these approaches by applying the polysite analysis
on microbench, a micro-benchmark with only about 1.4K lines of code (Ta-
ble 2). Table 5 shows the results of this evaluation. The input EDB for this
benchmark only contains 1,274 ground facts. Even so, total running time of
the Eager approach is almost 14x of the running times for our Lazy and Guided
approaches, while also grounding more clauses. More importantly, the solution
produced by the Eager approach is much worse than that produced by our pro-

13

ground|solution
strategy |# iterations|total time| clauses | cost |[IDB|

Eager 1 6m 56s 604 77 193
SoftCegar - - - - -
Lazy 23 29s 578 0 528
Guided 6 28s 599 0| 528

Table 5. Evaluation of LGS for polysite applied to microbench where |[EDB| = 1,274.
The SoftCegar approach did not terminate even after running for 24 hours.

posed approaches. The ‘solution cost’ column shows the sum of the weights of
the constraints violated by the final solution. The solution generated by the Ea-
ger approach has a cost of 77 while our proposed approaches produce a solution
not violating any constraint. This is also reflected in the fact that the size of the
IDB reported by the Eager approach is much smaller. The SoftCegar approach
fails to terminate on this benchmark even after running for 24 hours, highlighting
a limitation of the approach proposed in [5]. This approach uses a lazy, itera-
tive strategy only for hard constraints while the soft constraints are grounded
upfront. To ensure scalability, this strategy gives up on soundness, and thus the
solution produced in each iteration might even violate the already grounded hard
constraints. However, the terminating condition for this approach requires that
no hard constraints be violated by the current solution. It is easy to see that
this combination of factors can lead to a condition where the hard constraints
are violated in every iteration due to the unsoundness, and consequently, the
specific terminating condition prevents the solver from terminating.

5 Related Work

Our work on solving weighted constraints is related to the inference problem in
Markov Logic Networks (MLN) [27]. A MLN is a specification for various tasks
in statistical relational learning [9], and essentially is a mixed system of hard
and soft constraints. These constraints are used to express various information
retrieval tasks like link prediction, social network modeling, collective classifi-
cation, and others. A large body of work exists to solve these MLN constraints
efficiently. Lazy inference techniques [26,29] rely on the observation that most
ground facts in the final solution to a MLN problem have a false value. If the con-
straints are in the form of Horn rules, this implies that most ground clauses are
trivially true and do not need to be generated. These techniques start by assum-
ing a default false value for most ground facts, gradually refining and grounding
clauses as facts are determined to be true. In practice, these techniques tend
towards being too eager in their grounding. Lazy, iterative ground-and-solve ap-
proaches [5,28] are in the same class of techniques as our approach. They solve
constraints lazily by iteratively grounding only those constraints that are vi-
olated by the current solution. However, the approach in [5] only solves hard
constraints in a lazy manner while the soft constraints are effectively grounded
upfront. Further, as described in Section 4, the terminating condition for these

14

approaches can lead to scenarios where the iterative algorithm exits the loop
with an unsound solution or does not exit the loop at all. Lifted inference tech-
niques [4, 20, 25] use approaches from first-order logic, like variable elimination,
to simplify the system of weighted constraints, and can be used in conjunction
with various standard ground-and-solve techniques for solving such constraints.

All of these previous techniques are approximate, and the final solution is
neither guaranteed to be sound nor optimal. Though these approaches have
been successfully used for statistical relational learning tasks like information
retrieval, the nature of those applications allows approximations that are not
acceptable for program analysis applications. In contrast, LGS generalizes and
extends these works for solving weighted constraints, guaranteeing a sound and
optimal final solution. LGS provides maximum flexibility; it allows the solving
process to start with any set of initial grounded constraints, including an empty
set, and uses lazy grounding for both, hard and soft constraints.

Additionally, existing MLN solvers do not effectively exploit the logical struc-
ture of Horn constraints. However, constraints in the form of Horn rules, whose
least solution is desired, are common in program analysis and verification. The
Guided strategy in LGS provides a powerful mechanism for exploiting the struc-
ture in such constraints to significantly accelerate the process of solving them.
Given the generality of Horn rules, it is plausible that many information retrieval
tasks could be expressed in this form to benefit from our approach.

An alternative to grounding followed by MaxSAT solving is to directly use
a MaxSMT solver such as Z3 [2]. While Z3 currently does not scale to our
program analysis applications, our techniques could be incorporated into it as
Z3 already includes solvers for MaxSAT [2] and Datalog [10] that are needed by
our approach. Conversely, it would be interesting to extend our approach to the
richer theories that are supported by Z3.

6 Conclusion

We presented a technique for solving weighted constraints with applications to
program analysis and verification. Unlike existing approaches, which ground
the constraints eagerly and produce intractably large propositional instances
to MaxSAT solvers, our technique grounds them lazily and iteratively, produc-
ing instances that can be handled by existing off-the-shelf MaxSAT solvers. We
formalized our technique in a framework that generalizes and extends existing
approaches, and we proved the optimality and soundness of the framework. We
also identified an instance of the framework that accelerates the iterative process
in the case where the constraints are in the form of Horn clauses, which is com-
mon for applications in program analysis and verification. This instance strikes
a balance between the eager and lazy extremes by upfront grounding constraints
that will necessarily be grounded during the iterative process. We showed that
our technique scales significantly better than other approaches without sacrific-
ing soundness for a suite of several real-world program analysis applications.

15

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Beckman, N., Nori, A.: Probabilistic, modular and scalable inference of typestate
specifications. In: PLDI (2011)

Bjorner, N., Phan, A.D.: vz: Maximal satisfaction with Z3. In: Proceedings of
International Symposium on Symbolic Computation in Software Science (SCSS)
(2014)

Blackburn, S.M., Garner, R., Hoffman, C., Khan, A.M., McKinley, K.S., Bentzur,
R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.,
Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanovié¢, D., VanDrunen, T.,
von Dincklage, D., Wiedermann, B.: The DaCapo benchmarks: Java benchmarking
development and analysis. In: OOPSLA (2006)

Braz, R.D.S., Amir, E., Roth, D.: Lifted first-order probabilistic inference. In:
IJCAL pp. 1319-1325 (2005)

Chaganty, A., Lal, A., Nori, A., Rajamani, S.: Combining relational learning with
SMT solvers using CEGAR. In: CAV (2013)

Dillig, I., Dillig, T., Aiken, A.: Automated error diagnosis using abductive infer-
ence. In: PLDI (2012)

Dillig, I., Dillig, T., McMillan, K., Aiken, A.: Minimum satisfying assignments for
SMT. In: CAV (2012)

. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for Artificial Intelli-

gence. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers (2009)

Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press (2007)

Hoder, K., Bjgrner, N., De Moura, L.: uz: An efficient engine for fixed points with
constraints. In: CAV (2011)

Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., Domingos,
P.: The alchemy system for statistical relational AI. Tech. rep., Department of
Computer Science and Engineering, University of Washington, Seattle, WA (2007),
http://alchemy.cs.washington.edu

Kremenek, T., Ng, A., Engler, D.: A factor graph model for software bug finding.
In: IJCATI (2007)

Kremenek, T., Twohey, P., Back, G., Ng, A., Engler, D.: From uncertainty to belief:
Inferring the specification within. In: OSDI (2006)

Larraz, D., Nimkar, K., Oliveras, A., Rodriguez-Carbonell, E., Rubio, A.: Proving
non-termination using max-smt. In: CAV (2014)

Larraz, D., Oliveras, A., Rodriguez-Carbonell, E., Rubio, A.: Proving termination
of imperative programs using Max-SMT. In: FMCAD (2013)

Lhoték, O., Hendren, L.: Context-sensitive points-to analysis: is it worth it? In:
CC (2006)

Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A., Chechik, M.: Symbolic opti-
mization with SMT solvers. In: POPL (2014)

Livshits, B., Nori, A., Rajamani, S., Banerjee, A.: Merlin: specification inference
for explicit information flow problems. In: PLDI (2009)

Marques-Silva, J., Heras, F., Janota, M., Previti, A., Belov, A.: On computing
minimal correction subsets. In: IJCAI (2013)

Milch, B., Zettlemoyer, L.S., Kersting, K., Haimes, M., Kaelbling, L.P.: Lifted
probabilistic inference with counting formulas. In: AAAi (2008)

16

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Naik, M., Aiken, A., Whaley, J.: Effective static race detection for Java. In: PLDI
(2006)

Niu, F., Ré, C., Doan, A., Shavlik, J.W.: Tuffy: Scaling up statistical inference in
markov logic networks using an RDBMS. In: VLDB (2011)

Noessner, J., Niepert, M., Stuckenschmidt, H.: Rocklt: Exploiting parallelism and
symmetry for MAP inference in statistical relational models. In: AAAT (2013)
Papadimitriou, C.H.: Computational complexity. Addison-Wesley (1994)

Poole, D.: First-order probabilistic inference. In: IJCAT (2003)

Poon, H., Domingos, P., Sumner, M.: A general method for reducing the complexity
of relational inference and its application to MCMC. In: AAAT (2008)
Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2)
(2006)

Riedel, S.: Improving the accuracy and efficiency of MAP inference for Markov
Logic. In: UAT (2008)

Singla, P., Domingos, P.: Memory-efficient inference in relational domains. In:
AAAT (2006)

Sridharan, M., Bodik, R.: Refinement-based context-sensitive points-to analysis for
Java. In: PLDI (2006)

Whaley, J., Lam, M.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: PLDI (2004)

Zhang, X., Mangal, R., Grigore, R., Naik, M., Yang, H.: On abstraction refinement
for program analyses in Datalog. In: PLDI (2014)

17

A Proof of Theorem 1

Theorem 3. (Soundness and Optimality of LGS) For any weighted con-
straint system (H,S) where H is satisfiable, LGSg(H,S) produces equivalent re-
sults under 6 = Eager, 6 = Lazy, 0 = Guided, and 6 = Intermediate.

Proof. Tt suffices to show that LGSg—intermediate(H,S) = LGSg—Eager(H, S), since
0 = Lazy and 6 = Guided are special cases of § = Intermediate that use different
subsets of the fully ground set as the initial grounding.

First, observe that LGSg—intermediate(H, S) terminates: in each iteration of the
loop on line 7 of Algorithm 1, it must be the case that at least one new hard
clause is added to ¢ or at least one new soft clause is added to 1, because
otherwise the condition on line 13 will hold and the loop will be exited.

Now, suppose that in last iteration of the loop on line 7 for computing
LGSQ:Intermediate(Ha S)7 we have:

(1) ge1 = hgey U sgey is the set of hard and soft clauses accumulated in (¢, v)
so far (line 10);

(2) @1 = 0 and w1 = 0 (line 6), or Q1 = MaxSAT(hgcr, sger) and its weight is
wy (lines 11 and 12);

(3) gca = hgea U sges is the set of all hard and soft clauses that are violated by
@1 (lines 8 and 9);

(4) Q2 = MaxsaT(hgcy Uhges, sgep U sges) and its weight is we (lines 11 and 12);
and the condition on line 13 holds as this is the last iteration:

(5) wy = wo and hgcy = 0.

Then, the result of LGSg=intermediate(H,S) is Q1. On the other hand, the result of
LGSg—Eager(H, 9) is:

(6) Qf =MaxsaT(hgcy, sgey) (line 5 of Alg. 1) where:

(7) gcy = hgey U sgey is the set of fully grounded hard and soft clauses (line 5
of Alg. 2).

Thus, it suffices to show that @1 and Qs are equivalent. We first extend the
function weight (Figure 6) to hard clauses, yielding —oo if any such clause is
violated:

W = MQ,hgc U sgc). if (Ip € hge: Q = p) then —o0
else Weight (Q, sgc)

Define gep, = gea \ geq.
(8) For any @, we have:

W(Q,gc1 Ugez) = W(Q,ger) +W(Q, gem)
= W(Q,gec1) +W(Q, hgea \ hger) +W(Q, sgea \ sger)
= W(Q,gc1) +W(Q,sgca \ sger) [a
2 w(Qvgcl) [b]

where [a] follows from (5), and [b] from W(Q, sgcz) >= 0 (i.e., soft clauses do not
have negative weights). Instantiating (8) with Q1, we have: (9): W(Q1, gc1Ugea) >
W(Q1, gcr). Combining (2), (4), and (5), we have: (10): W(Q1, gc1) = W(Q2, gc1 U

18

gc2). Combining (9) and (10), we have: (11)W(Q1, gc1 U gea) > W(Q2, ger U gea).
This means @ is a better solution than Q2 on gc; U geo. But from (4), we have
that @2 is an optimum solution to gc; U gea, so we have: (12): @ is also an
optimum solution to gec; U ges.

It remains to show that @1 is also an optimum solution to the set of fully
grounded hard and soft clauses gcy, from which it will follow that @1 and Q¢
are equivalent. Define ge, = gcy \ (ge1 U gea). For any @, we have:

W<Q’ ng)

W(Q, ge1 U gea U gey)
W(Q,gc1 U gez) +W(Q, ger)
W(Q1,9c1 U gez) +W(Q, ger) [d]
W(Q1,9c1 U gez) +W(Q1, ger) [d]
(
(

A IA

W(Q1,gc1 U gea U ge,)
W Qlagcf)

ie. VQ,W(Q,gcr) <W(Q1,gcr), proving that @1 is an optimum solution to gey.
Inequality [c] follows from (11), that is, @1 is an optimum solution to gc; U ges.
Inequality [d] holds because from (3), all clauses that @)1 possibly violates are in
gca, whence Qq satisfies all clauses in ge¢,., whence W(Q, gc,.) < W(Q1, gcr). ad

B Proof of Theorem 2

Theorem 4. (Optimal Initial Grounding for Horn Rules) If a weighted
constraint system is constituted of a set of hard constraints H, each of which is
a Horn rule /\?:1 t; = to, whose least solution is desired:

G =1Ifp AG". G' U { [to]ls | (A" t: = to) € H and Vi € [1..n]: [t:]o € G' },

then for such a system, (a) LGSp=1azy(H, D) grounds at least |G| clauses, and (b)
L.GSg—Guided (H, 0) with the initial grounding ¢ does not ground any more clauses:

¢ =N Vie, o[tds V [tolo | (Aiy ts = to) € H and Vi € [0..n]: [t;], € G }.

Proof. To prove (a), we will show that for each g € G, LGSg=razy (H,0) must
ground some clause with g on the r.h.s. Let the sequence of sets of clauses
grounded in the iterations of this procedure be C1, ..., C,. Then, we have:
Proposition (1): each clause A", g; = ¢’ in any Q; was added because the pre-
vious solution set all g; to true and ¢’ to false. This follows from the assumption
that all rules in H are Horn rules. Let = € [1..n] be the earliest iteration in whose
solution g was set to true. Then, we claim that ¢ must be on the r.h.s. of some
clause p in Q.. Suppose for the sake of contradiction that no clause in @, has g
on the r.h.s. Then, it must be the case that there is some clause p’ in Q, where
g is on the Lh.s. (the MaxSAT procedure will not set variables to true that do not
even appear in any clause in Q). Suppose clause p’ was added in some iteration
y < z. Applying proposition (1) above to clause p’ and j = z, it must be that g
was true in the solution to iteration y, contradicting the assumption above that
x was the earliest iteration in whose solution g was set to true.

19

To prove (b), suppose LGSg—cuided(H, D) grounds an additional clause, that
is, there exists a (A]_, t; = to) € H and a o such that G (£ /!, =[t:]o V [to]s-
The only way by which this can hold is if Vi € [1..n] : [t;], € G and [to], ¢ G,
but this contradicts the definition of G.

C Additional Experiments

O

brief description # classes|# methods|bytecode (KB)|source (KLOC)
app|total| app |total| app | total app | total
ftp Apache FTP server 93| 414| 471|2,206| 29 118 13 130
hedc web crawler from ETH 44| 353| 230|2,134| 16 140 6 153
weblech|website download/mirror tool 11| 576| 78|3,326| 6 208 12 194
luindex|document indexing and search tool|206| 619(1,390(3,732| 102 235 39 190

« 9

Table 6. Characteristics of our benchmark programs. Columns “total” and “app
report numbers with and without counting Java standard library code, respectively.

total total time # ground
|EDB|| ground |# iterations| (hh:mm) |clauses(x10°%)||IDB|
analysis|program|(x10°)| clauses [Lazy[Guided| Lazy |Guided|Lazy| Guided |(x10°)
A [hede 6.6]6.2x10%%] 145 7| 4:48] 0:30] 4.7 4.8 3.8
W |ftp 3.9(1.7x10%% | 168 7| 3:31| 0:20| 2.8 3.0 2.3
) weblech 8.713.0x192°| 237 7113:11| 0:54| 7.7 8.6 6.0
luindex 11(1.2x10%° | 216 8[18:41| 1:18] 11 12 8.4
& |hedc 6.6]6.2x10°%] 140 8] 5:01] 0:34] 4.9 5.1 4.0
& gt 3.9|1.6x10% | 171 8| 3:55| 0:23] 3.0 32| 24
¥® weblech 8.713.0x10%° | 254 9(16:18| 1:07| 8.5 9.6 6.5
luindex 11(1.2x10%° | 186 9(24:43| 1:54| 11 13 9.2
& [hede 0.5]1.9x10%* | 354 6| 1:55| 0:06| 0.8 0.9 0.7
&&‘ ftp 0.43.7x10%% | 463 5| 7:53| 0:08] 1.2 1.4 1.0
N weblech 1.2]4.4x10%* | 416 6] 1:59| 0:07] 0.6 0.9 0.5
luindex 1.9| 1.610%° | 481 7| 4:07| 0:12] 0.6 1.1 0.5

Table 7. Evaluation of LGS on program analysis applications.

20

