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Motivation

Recipe for designing automated, efficient, sound, and complete program
verification tools




What is program verification?
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Static Verifiers - Program Analyses
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Let's combine!
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Are we done?

Yes, and no :(

e Yes, for ‘extensional’ or ‘local’ properties
o Properties about the results of computations
o Can be answered by observing the current program state

e No, for ‘intensional’ properties
o Properties about how computations execute



Intensional Properties

e Track how computations execute
e Examples - taint tracking, datarace checking, program complexity, etc.

e Instrumented semantics - Augment the states of standard semantics with

instrumentation data
o Ex. <P,S> -~ <P’,S’> modified to <P,S,I> ~ <P’,S’,I'>



What is the problem?

e Combined verification only removes runtime assertions but not additional

instrumentation
o High overheads!

e No existing general framework for combining static and dynamic verifiers with
a focus on efficiency



|deal

e Remove “all” dynamic instrumentation “associated” with statically proven
assertions

e Challenges:
o How to communicate information from static to dynamic verifier?
o How to formally define the notions of “all” and “associated” in the statement above?
o How to automatically discover “all associated” instrumentation for a given assertion?

e Approach:
o “Parameterize” static and dynamic verifiers
o Notions of “all” and “associated” defined with respect to this parameterization



A taint analysis example

void main() { A foo(A a) { B foo(B b) {
A 0l = srcl();
B 02 = src2(); X = san(a);
A 03 = foo(ol);
B o4 = bar(o2); return Xx; return y;
—_—— }
sinkl(03);
assert(o4 not tainted);
sink2(04);



An interlude: Some definitions

eval : State — State (evaluator for the language)

abs_int : Abs_State — Abs_State (abstract interpreter)

a: 2% — Abs_State (abstraction function)

af{eval(s)|s € X} C abs_int(a(X)) (relationship between eval and abs_int)

erase : State — Uninstrumented_State

extract : State — Instrumentation_Data
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Parametric Verifiers - Static
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Let's combine, again!
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Minimal Parameter Problem (MPP)

e Find minimal parameter 1T such that,
V si. (eval (T,s) = fail) = (eval (m,s) = fail)

e Finding the minimal parameter is equivalent to removing “all dynamic”
instrumentation “associated” with statically proven assertions!

e MPP is not tractable, but we can approximately solve it by exploiting the
relationship between our parametric static and dynamic verifiers



A simple parameter search algorithm
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Analysis designer’s responsibilities

e Parameterize static and dynamic verifiers with a shared parametric notion

e Ensure:
o afeval(s)|s € X} C abs_int(a(X))
o Vsm (erase(eval (m,s)) = erase(eval(s))) V (eval (m,s) = fail)
o Vm,m. mwmsm, = 3sij((eval (m,s)="fail) = (eval (m,s) = fail].))
o VXm afeval (ms)|s € X} E abs_int (m,a(X))
o Vm,m,. msm, = fails(abs_int (m init)) < fails(abs_int _(,,init))

e And then,




Can we improve?

e Improve parameter search:
o Exploit the structure of static verifier proofs
o Leverage existing work on finding best abstractions

e Further reduce dynamic verifier overheads
o Make optimistic/speculative assumptions statically to prove more assertions
o Check these assumptions at runtime
o Reduced instrumentation due to more proven assertions vs Overhead of checking
assumptions

e Connections to gradual typing and hybrid typing (Please help!)



Thank You!



