On Optimally Combining
Static and Dynamic Analyses
For
Intensional Program Properties

Ravi Mangal David Devecsery Alessandro Orso

Motivation

Recipe for designing automated, efficient, sound, and complete program
verification tools

What is program verification?

Verifier

[P1+ [¢]

[P] = [¢]

?

Static Verifiers - Type Systems

Type
Inference/

Checking
Type ¢

Static Verifiers - Program Logics

Proof T} P {$}
Checker -

Spec ¢ "

R
Interactive PEu—

Static Verifiers - Program Analyses

Abstract

Interpreter

Dynamic Verifiers

Instrumenter

Program
Input

—e

P with
ssertions/contract

J

Evaluator

Let's combine!

[Program P

Abstract
Interpreter

4

)

Instrumenter —{

P with
assertions ¢,

A

Evaluator

W

Program
Input

Are we done?

Yes, and no :(

e Yes, for ‘extensional’ or ‘local’ properties
o Properties about the results of computations
o Can be answered by observing the current program state

e No, for ‘intensional’ properties
o Properties about how computations execute

Intensional Properties

e Track how computations execute
e Examples - taint tracking, datarace checking, program complexity, etc.

e Instrumented semantics - Augment the states of standard semantics with

instrumentation data
o Ex. <P,S> -~ <P’,S’> modified to <P,S,I> ~ <P’,S’,I'>

What is the problem?

e Combined verification only removes runtime assertions but not additional

instrumentation
o High overheads!

e No existing general framework for combining static and dynamic verifiers with
a focus on efficiency

|deal

e Remove “all” dynamic instrumentation “associated” with statically proven
assertions

e Challenges:
o How to communicate information from static to dynamic verifier?
o How to formally define the notions of “all” and “associated” in the statement above?
o How to automatically discover “all associated” instrumentation for a given assertion?

e Approach:
o “Parameterize” static and dynamic verifiers
o Notions of “all” and “associated” defined with respect to this parameterization

A taint analysis example

void main() { A foo(A a) { B foo(B b) {
A 0l = srcl();
B 02 = src2(); X = san(a);
A 03 = foo(ol);
B o4 = bar(o2); return Xx; return y;
—_—— }
sinkl(03);
assert(o4 not tainted);
sink2(04);

An interlude: Some definitions

eval : State — State (evaluator for the language)

abs_int : Abs_State — Abs_State (abstract interpreter)

a: 2% — Abs_State (abstraction function)

af{eval(s)|s € X} C abs_int(a(X)) (relationship between eval and abs_int)

erase : State — Uninstrumented_State

extract : State — Instrumentation_Data

Parametric Verifiers - Dynamic
Program
Input
Instrumenter [Pwith]— Evaluator

| assertions

[Parameter 'IT]

eval : Parameter x State — State (parametric evaluator for the language)

V s, (erase(eval (m,s)) = erase(eval(s))) V (eval (ms) = fail)

<, = 3sij.((eval (m,s)="fail) = (eval (m,s) = fail].))

Y T,)

2"

Parametric Verifiers - Static

Program P

)

[P] = [¢]
Abstract —
Interpreter PR
?

~——

[Parameter 1T

abs_int : Parameter x Abs_State — Abs_State (parametric abstract interpreter)

v Xt afeval (T,s)|s € X} E abs_int_(m,a(X))

m,< T, = fails(abs_int (m,,init)) < fails(abs_int (m,,init))

Y T,)

2"

Let's combine, again!

[Program P

Assertions

9

Abstract
Interpreter

f

LParameter

]

Instrumenter —{

P with
assertions

|

)

A

Evaluator

1
Program
Input

Minimal Parameter Problem (MPP)

e Find minimal parameter 1T such that,
V si. (eval (T,s) = fail) = (eval (m,s) = fail)

e Finding the minimal parameter is equivalent to removing “all dynamic”
instrumentation “associated” with statically proven assertions!

e MPP is not tractable, but we can approximately solve it by exploiting the
relationship between our parametric static and dynamic verifiers

A simple parameter search algorithm

T

Parameter Space

Analysis designer’s responsibilities

e Parameterize static and dynamic verifiers with a shared parametric notion

e Ensure:
o afeval(s)|s € X} C abs_int(a(X))
o Vsm (erase(eval (m,s)) = erase(eval(s))) V (eval (m,s) = fail)
o Vm,m. mwmsm, = 3sij((eval (m,s)="fail) = (eval (m,s) = fail].))
o VXm afeval (ms)|s € X} E abs_int (m,a(X))
o Vm,m,. msm, = fails(abs_int (m init)) < fails(abs_int _(,,init))

e And then,

Can we improve?

e Improve parameter search:
o Exploit the structure of static verifier proofs
o Leverage existing work on finding best abstractions

e Further reduce dynamic verifier overheads
o Make optimistic/speculative assumptions statically to prove more assertions
o Check these assumptions at runtime
o Reduced instrumentation due to more proven assertions vs Overhead of checking
assumptions

e Connections to gradual typing and hybrid typing (Please help!)

Thank You!

