
Probabilistic Lipschitz Analysis
of Neural Networks

Ravi Mangal1, Kartik Sarangmath1, Aditya V. Nori2, and Alessandro Orso1

1 Georgia Institute of Technology, Atlanta GA 30332, USA
{rmangal3,kartiksarangmath,orso}@gatech.edu
2 Microsoft Research, Cambridge, CB1 2FB, UK

Aditya.Nori@microsoft.com

Abstract. We are interested in algorithmically proving the robustness
of neural networks. Notions of robustness have been discussed in the
literature; we are interested in probabilistic notions of robustness that
assume it feasible to construct a statistical model of the process generat-
ing the inputs of a neural network. We find this a reasonable assumption
given the rapid advances in algorithms for learning generative models of
data. A neural network f is then defined to be probabilistically robust
if, for a randomly generated pair of inputs, f is likely to demonstrate
k-Lipschitzness, i.e., the distance between the outputs computed by f is
upper-bounded by the kth multiple of the distance between the pair of
inputs. We name this property, probabilistic Lipschitzness.
We model generative models and neural networks, together, as programs
in a simple, first-order, imperative, probabilistic programming language,
pcat. Inspired by a large body of existing literature, we define a de-
notational semantics for this language. Then we develop a sound local
Lipschitzness analysis for cat, a non-probabilistic sublanguage of pcat.
This analysis can compute an upper bound of the “Lipschitzness” of a
neural network in a bounded region of the input set. We next present a
provably correct algorithm, PROLIP, that analyzes the behavior of a neu-
ral network in a user-specified box-shaped input region and computes -
(i) lower bounds on the probabilistic mass of such a region with respect
to the generative model, (ii) upper bounds on the Lipschitz constant of
the neural network in this region, with the help of the local Lipschitz-
ness analysis. Finally, we present a sketch of a proof-search algorithm
that uses PROLIP as a primitive for finding proofs of probabilistic Lips-
chitzness. We implement the PROLIP algorithm and empirically evaluate
the computational complexity of PROLIP.

1 Introduction

Neural networks (NNs) are useful for modeling a variety of computational tasks
that are beyond the reach of manually written programs. We like to think of NNs
as programs in a first-order programming language specialized to operate over
vectors from high-dimensional Euclidean spaces. However, NNs are algorithmi-
cally learned from observational data about the task being modeled. These tasks

2 R. Mangal et al.

typically represent natural processes for which we have large amounts of data
but limited mathematical understanding. For example, NNs have been successful
at image recognition [40] - assigning descriptive labels to images. In this case,
the underlying natural process that we want to mimic computationally is image
recognition as it happens in the human brain. However, insufficient mathematical
theory about this task makes it hard to develop a hand-crafted algorithm.

Given that NNs are discovered algorithmically, it is important to ensure that
a learned NN actually models the computational task of interest. With the per-
spective of NNs as programs, this reduces to proving that the NN behaves in
accordance with the formal specification of the task at hand. Unfortunately,
limited mathematical understanding of the tasks implies that, in general, we are
unable to even state the formal specification. In fact, it is precisely in situations
where we are neither able to manually design an algorithm nor able to provide
formal specifications in which NNs tend to be deployed. This inability to verify
or make sense of the computation represented by a NN is one of the primary
challenges to the widespread adoption of NNs, particularly for safety critical ap-
plications. In practice, NNs are tested on a limited number of manually provided
tests (referred to as test data) before deploying. However, a natural question is,
what formal correctness guarantees, if any, can we provide about NNs?

A hint towards a useful notion of correctness comes from an important ob-
servation about the behavior of NNs, first made by [51]. They noticed that state-
of-the-art NNs that had been learned to perform the image recognition task
were unstable - small changes in the inputs caused the learned NNs to produce
large, unexpected, and undesirable changes in the outputs. In the context of
the image recognition task, this meant that small changes to the images, imper-
ceptible to humans, caused the NN to produce very different labels. The same
phenomenon has been observed by others, and in the context of very different
tasks, like natural language processing [35,2] and speech recognition [13,14,45].
This phenomenon, commonly referred to as lack of robustness, is widespread
and undesirable. This has motivated a large body of work (see [59,43,62] for
broad but non-exhaustive surveys) on algorithmically proving NNs robust. These
approaches differ not only in the algorithms employed but also in the formal
notions of robustness that they prove.

An majority of the existing literature has focused on local notions of robust-
ness. Informally, a NN is locally robust at a specific input, x0, if it behaves robustly
in a bounded, local region of the input Euclidean space centered at x0. There
are multiple ways of formalizing this seemingly intuitive property. A common
approach is to formalize this property as, @x.p‖x´ x0‖ ď rq Ñ φppfxq, pfx0qq,
where f is the NN to be proven locally robust at x0, pfxq represents the result
of applying the NN f on input x, φppfxq, pfx0qq represents a set of linear con-
straints imposed on pfxq, and ‖¨‖ represents the norm or distance metric used
for measuring distances in the input and output Euclidean spaces (typically,
an lp norm is used with p P t1, 2,8u). An alternate, less popular, formulation
of local robustness, referred to as local Lipschitzness at a point, requires that
@x, x1.p‖x´ x0‖ ď rq ^ p‖x1 ´ x0‖ ď rq Ñ p‖fx´ fx1‖ ď k ˚ ‖x´ x1‖q. Local

Probabilistic Lipschitz Analysis of Neural Networks 3

Lipschitzness ensures that in a ball of radius r centered at x0, changes in the
input only lead to bounded changes in the output. One can derive other forms of
local robustness from local Lipschitzness. (see Theorem 3.2 in [58]). We also find
local Lipschitzness to be an aesthetically more pleasing and natural property of
a function. But, local Lipschitzness is a relational property [12,6]/hyperproperty
[18] unlike the first formulation, which is a safety property [41]. Algorithms
for proving safety properties of programs have been more widely studied and
there are a number of mature approaches to build upon, which may explain the
prevalence of techniques for proving the former notion of local robustness. For
instance, [49,28] are based on variants of polyhedral abstract interpretation [21],
[10,37,38] encode the local robustness verification problem as an SMT constraint.

Local robustness (including local Lipschitzness) is a useful but limited guar-
antee. For inputs where the NN has not been proven to be locally robust, no
guarantees can be given. Consequently, a global notion of robustness is desir-
able. Local Lipschitzness can be extended to a global property - a NN f is globally
Lipschitz or k-Lipschitz if, @x, x1.p‖fx´ fx1‖ ď k ˚ ‖x´ x1‖q. Algorithms have
been proposed in programming languages and machine learning literature for
computing Lipschitz constant upper bounds. Global robustness is guaranteed if
the computed upper bound is ď k.

Given the desirability of global robustness over local robustness, the focus
on local robustness in the existing literature may seem surprising. There are
two orthogonal reasons that, we believe, explain this state of affairs - (i) prov-
ing global Lipschitzness, particularly with a tight upper bound on the Lipschitz
constant, is more technically and computationally challenging than proving local
Lipschitzness, which is itself hard to prove due its relational nature; (ii) requir-
ing NNs to be globally Lipschitz with some low constant k can be an excessively
stringent specification, unlikely to be met by most NNs in practice. NNs, unlike
typical programs, are algorithmically learnt from data. Unless the learning algo-
rithm enforces the global robustness constraint, it is unlikely for a learned NN to
exhibit this “strong” property. Unfortunately, learning algorithms are ill-suited
for imposing such logical constraints. These algorithms search over a set of NNs
(referred to as the hypothesis class) for the NN minimizing a cost function (re-
ferred to as loss function) that measures the “goodness” of a NN for modeling
the computational task at hand. These algorithms are greedy and iterative, fol-
lowing the gradient of the loss function. Modifying the loss function in order
to impose the desired logical constraints significantly complicates the function
structure and makes the gradient-based, greedy learning algorithms ineffective.3

Consequently, in this work, we focus on a probabilistic notion of global ro-
bustness. This formulation, adopted from [44], introduces a new mathematical
object to the NN verification story, namely, a probability measure over the inputs
to the NN under analysis. One assumes it feasible to construct a statistical model
of the process generating the inputs of a NN. We find this a reasonable assump-
tion given the rapid advances in algorithms for learning generative models of
data [39,32]. Such a statistical model yields a distribution D over the inputs of

3 Recent work has tried to combine loss functions with logical constraints [27].

4 R. Mangal et al.

the NN. Given distribution D and a NN f , this notion of robustness, that we refer
to as probabilistic Lipschitzness, is formally stated as,

Pr
x,x1„D

p
∥∥fx´ fx1∥∥ ď k ˚

∥∥x´ x1∥∥ ˇ

ˇ

∥∥x´ x1∥∥ ď rq ě 1´ ε

This says that if we randomly draw two samples, x and x1 from the distribution
D, then, under the condition that x and x1 are r-close, there is a high probability
(ě p1´ εq) that NN f behaves stably for these inputs. If the parameter ε “ 0 and
r “ 8, then we recover the standard notion of k-Lipschitzness. Conditioning
on the event of x and x1 being r-close reflects the fact that we are primarily
concerned with the behavior of the NN on pairs of inputs that are close.

To algorithmically search for proofs of probabilistic Lipschitzness, we model
generative models and NNs together as programs in a simple, first-order, imper-
ative, probabilistic programming language, pcat. First-order probabilistic pro-
gramming languages with a sample construct, like pcat, have been well-studied.4

Programs in pcat denote transformers from Euclidean spaces to probability mea-
sures over Euclidean spaces. pcat, inspired by the non-probabilistic language cat
[28], is explicitly designed to model NNs, with vectors in Rn as the basic datatype.
The suitability of pcat for representing generative models stems from the fact
that popular classes of generative models (for instance, the generative network
of generative adversarial networks [32] and the decoder network of variational
autoencoders [39]) are represented by NNs. Samples from the input distribution
D are obtained by drawing a sample from a standard distribution (typically a
normal distribution) and running this sample through generative or decoder net-
works. In pcat, this can be represented as the program, z ø Np0, 1q; g, where
the first statement represents the sampling operation (referred to as sampling
from the latent space, with z as the latent variable) and g is the generative or
decoder NN. If the NN to be analyzed is f , then we can construct the program,
z ø Np0, 1q; g; f , in pcat, and subject it to our analysis.

Adapting a language-theoretic perspective allows us to study the problem
in a principled, general manner and utilize existing program analysis and veri-
fication literature. In particular, we are interested in sound algorithms that can
verify properties of probabilistic programs without needing manual intervention.
Thus approaches based on interactive proofs [8,9], requiring manually-provided
annotations and complex side-conditions [36,15,7] or only providing statistical
guarantees [46,11] are precluded. Frameworks based on abstract interpretation
[22,54] are helpful for thinking about analysis of probabilistic programs but we
focus on a class of completely automated proof-search algorithms [29,47,1] that
only consider probabilistic programs where all randomness introducing state-
ments (i.e., sample statements) are independent of program inputs, i.e. samples
are drawn from fixed, standard probability distributions, similar to our setting.
These algorithms analyze the program to generate symbolic constraints (i.e.,
sentences in first-order logic with theories supported by SMT solvers) and then
compute the probability mass or “volume”, with respect to a fixed probability
measure, of the set of values satisfying these constraints. These algorithms are

4 pcat has no observe or score construct and cannot be used for Bayesian reasoning.

Probabilistic Lipschitz Analysis of Neural Networks 5

unsuitable for parametric probability measures but suffice for our problem. Both
generating symbolic constraints and computing volumes can be computationally
expensive (and even intractable for large programs), so a typical strategy is to
break down the task into simpler sub-goals. This is usually achieved by defining
the notion of “program path” and analyzing each path separately. This per path
strategy is unsuitable for NNs, with their highly-branched program structure. We
propose partitioning the program input space (i.e., the latent space in our case)
into box-shaped regions, and analyzing the program behavior separately on each
box. The box partitioning strategy offers two important advantages - (i) by not
relying explicitly on program structure to guide partitioning strategy, we have
more flexibility to balance analysis efficiency and precision; (ii) computing the
volume of boxes is easier than computing the same for sets with arbitrary or
even convex structure.

For the class of probabilistic programs we are interested in (with structure,
z ø Np0, 1q; g; f), the box-partitioning strategy implies repeatedly analyzing
the program g; f while restricting z to from box shaped regions. In every run,
the analysis of g; f involves computing a box-shaped overapproximation, xB , of
the outputs computed by g when z is restricted to some specific box zB and com-
puting an upper bound on the local Lipschitz constant of f in the box-shaped
region xB . We package these computations, performed in each iteration of the
proof-search algorithm, in an algorithmic primitive, PROLIP. For example, con-
sider the scenario where f represents a classifier, trained on the MNIST dataset,
for recognizing hand-written digits, and g represents a generative NN modeling
the distribution of the MNIST dataset. In order to prove probabilistic Lipschitz-
ness of f with respect to the distribution D represented by the generative model
z ø Np0, 1q; g, we iteratively consider box-shaped regions in the latent space
(i.e., in the input space of g). For each such box-shaped region σB in the in-
put space of g, we first compute an overapproximation σ̃B of the corresponding
box-shaped region in the output space of g. Since the output of g is the input
of f , we next compute an upper bound on the local Lipschitz constant of f in
the region σ̃B . If the computed upper bound is less than the required bound,
we add the probabilistic mass of region σB to an accumulator maintaining the
probability of f being Lipschitz with respect to the distribution D.

For computing upper bounds on local Lipschitz constants, we draw inspi-
ration from existing literature on Lipschitz analysis of programs [16] and NNs

[51,19,26,42,53,57,61,52,33]. In particular, we build on the algorithms presented
in [57,61]. We translate these algorithms in to our language-theoretic setting
and present the local Lipschitzness analysis in the form of an abstract semantics
for the cat language, which is a non-probabilistic sublanguage of pcat. In the
process, we also simplify and generalize the original algorithms.

To summarize, our primary contributions in this work are - (i) we present
a provably sound algorithmic primitive PROLIP and a sketch of a proof-search
algorithm for probabilistic Lipschitzness of NNs, (ii) we develop a simplified and
generalized version of the local Lipschitzness analysis in [57], capable of comput-
ing an upper bound on the local Lipschitz constant of box-shaped input regions

6 R. Mangal et al.

(variables) x, y PV
(naturals) m,n PN
(weights) w P

Ť

m,nPN R
mˆn

(biases) β P
Ť

nPN R
n

s ::“ skip | y Ð w ¨ x` β | y ø Np0, 1q | s; s | if b then s else s
s´ ::“ skip | y Ð w ¨ x` β | s´; s´ | if b then s´ else s´

b ::“ πpx,mq ě πpy, nq | πpx, nq ě 0 | πpx, nq ă 0 | b^ b | b
e ::“ πpx, nq | w ¨ x` β

Fig. 1: pcat syntax

for any program in the cat language, (iii) we develop a strategy for computing
proofs of probabilistic programs that limits probabilistic reasoning to volume
computation of regularly shaped sets with respect to standard distributions, (iv)
we implement the PROLIP algorithm, and evaluate its computational complexity.

2 Language Definition

2.1 Language Syntax

pcat (probabilistic conditional affine transformations) is a first-order, impera-
tive probabilistic programming language, inspired by the cat language [28]. pcat
describes always terminating computations on data with a base type of vectors
over the field of reals (i.e., of type

Ť

nPN Rn). pcat is not meant to be a practi-
cal language for programming, but serves as a simple, analyzable, toy language
that captures the essence of programs structured like NNs. We emphasize that
pcat does not capture the learning component of NNs. We think of pcat pro-
grams as objects learnt by a learning algorithm (commonly stochastic gradient
descent with symbolic gradient computation). We want to analyze these learned
programs and prove that they satisfy the probabilistic Lipschitzness property.

pcat can express a variety of popular NN architectures and generative models.
For instance, pcat can express ReLU, convolution, maxpool, batchnorm, trans-
posed convolution, and other structures that form the building blocks of popular
NN architectures. We describe the encodings of these structures in Appendix F.
The probabilistic nature of pcat further allows us to express a variety of gen-
erative models, including different generative adversarial networks (GANs) [32]
and variational autoencoders (VAEs) [39].

pcat syntax is defined in Figure 1. pcat variable names are drawn from a set
V and refer to vector of reals. Constant matrices and vectors appear frequently
in pcat programs, playing the role of learned weights and biases of NNs, and are
typically represented by w and β, respectively. Programs in pcat are composed of
basic statements for performing linear transformations of vectors (y Ð w ¨x`β)
and sampling vectors from normal distributions (y ø Np0, 1q). Sampling from
parametric distributions is not allowed. Programs can be composed sequentially
(s; s) or conditionally (if b then s else s). pcat does not have a loop construct,

Probabilistic Lipschitz Analysis of Neural Networks 7

Σ fiV Ñ
Ť

nPN R
n

JeK : Σ Ñ
Ť

nPN R
n

Jπpx, nqKpσq “σpxqn
Jw ¨ x` βKpσq “w ¨ σpxq ` β

JbK : Σ Ñ ttt,ffu
Jπpx,mq ě πpy, nqKpσq “ if pJπpx,mqKpσq ě Jπpy, nqKpσqq then tt else ff

Jπpx,mq ě 0Kpσq “ if pJπpx,mq ě 0Kpσqq then tt else ff
Jπpx,mq ă 0Kpσq “ if pJπpx,mqKpσq ă 0q then ttelse ff

Jb1 ^ b2Kpσq “ Jb1Kpσq ^ Jb2Kpσq
J bKpσq “ if pJbK “ ttq then ff else tt

JsK : Σ Ñ P pΣq
JskipKpσq “ δσ

Jy Ð w ¨ x` βKpσq “ δσry ÞÑJw¨x`βKpσqs

Jy ø Np0, 1qKpσq “Ea„Np0,1qrλν.δσry ÞÑνss
Js1; s2Kpσq “Eσ̃„Js1KpσqrJs2Ks

Jif b then s1 else s2Kpσq “ if pJbKpσqq then Js1Kpσq else Js2Kpσq

xJsK : P pΣq Ñ P pΣq
xJsKpµq “Eσ„µrJsKs

~Js´K : Σ Ñ Σ
­JskipKpσq “σ

­Jy Ð w ¨ x` βKpσq “σry ÞÑ Jw ¨ x` βKpσqs
­Js1; s2Kpσq “ }Js2Kp}Js1Kpσqq

­Jif b then s1 else s2Kpσq “ if pJbKpσqq then }Js1Kpσq else }Js2Kpσq

Fig. 2: pcat denotational semantics

acceptable as many NN architectures do not contain loops. pcat provides a pro-
jection operator πpx, nq that reads the nth element of the vector referred by x.
For pcat programs to be well-formed, all the matrix and vector dimensions need
to fit together. Static analyses [50,31] can ensure correct dimensions. In the rest
of the paper, we assume that the programs are well-formed.

2.2 Language Semantics

We define the denotational semantics of pcat in Figure 2, closely following those
presented in [8]. We present definitions required to understand these semantics.

Definition 1. A σ´algebra on a set X is a set Σ of subsets of X such that
it contains X, is closed under complements and countable unions. A set with a
σ´algebra is a measurable space and the subsets in Σ are measurable.

A measure on a measurable space pX,Σq is a function µ : Σ Ñ r0,8s such
that µpHq “ 0 and µp

Ť

iPNBiq “
ř

iPN µpBiq such that Bi is a countable family

8 R. Mangal et al.

of disjoint measurable sets. A probability measure or probability distribution is a
measure µ with µpXq “ 1.

Given set X, we use P pXq to denote the set of all probability measures
over X. A Dirac distribution centered on x, written δx, maps x to 1 and all
other elements of the underlying set to 0. Note that when giving semantics to
probabilistic programming languages, it is typical to consider sub-distributions
(measures such that µpXq ď 1 for a measurable space pX,Σq), as all programs in
pcat terminate, we do not describe the semantics in terms of sub-distributions.
Next, following [8], we give a monadic structure to probability distributions.

Definition 2. Let µ P P pAq and f : A Ñ P pBq. Then, Ea„µrf s P P pBq is
defined as, Ea„µrf s fi λν.

ş

A
fpaqpνq dµpaq

Note that in the rest of the paper, we write expressions of the form
ş

A
fpaq dµpaq

as
ş

aPA
µpaq ¨ fpaq for notational convenience. The metalanguage used in Figure

2 and the rest of the paper is standard first-order logic with ZFC set theory,
but we borrow notation from a variety of sources including languages like C and
ML as well as standard set-theoretic notation. As needed, we provide notational
clarification.

We define the semantics of pcat with respect to the set Σ of states. A state σ
is a map from variables V to vectors of reals of any finite dimension. The choice
of real vectors as the basic type of values is motivated by the goal of pcat to
model NN computations. The set P pΣq is the set of probability measures over
Σ. A pcat statement transforms a distribution over Σ to a new distribution over
the same set. JeK and JbK denote the semantics of expressions and conditional
checks, respectively. Expressions map states to vectors of reals while conditional
checks map states to boolean values.

The semantics of statements are defined in two steps. We first define the
standard semantics JsK where statements map incoming states to probability

distributions. Next, the lifted semantics, xJsK, transform a probability distribu-
tion over the states, say µ, to a new probability distribution. The lifted semantics

(xJsK) are obtained from the standard semantics (JsK) using the monadic construc-

tion of Definition 2. Finally, we also defined a lowered semantics (~Js´K) for the
cat sublanguage of pcat. As per these lowered semantics, statements are maps
from states to states. Moreover, the lowered semantics of cat programs is tightly
related to their standard semantics, as described by the following lemma.

Lemma 3. (Equivalence of semantics)
@p P s´, σ P Σ. JpKpσq “ δ

}JpKpσq

Proof. Appendix A �

The lemma states that one can obtain the standard probabilistic semantics for
a program p in cat, given an initial state σ, by a Dirac delta distribution centered

at |JpKpσq. Using this lemma, one can prove the following useful corollary.

Corollary 4. @p P s´, σ P Σ,µ P P pΣq. xJpKpµqp|JpKpσqq ě µpσq

Proof. Appendix B �

Probabilistic Lipschitz Analysis of Neural Networks 9

3 Lipschitz Analysis

A function f is locally Lipschitz in a bounded set S if, @x, x1 P S.‖fx´ fx1‖ ď
k ¨ ‖x´ x1‖, where ‖¨‖ can be any lp norm. Quickly computing tight upper
bounds on the local Lipschitzness constant (k) is an important requirement
of our proof-search algorithm for probabilistic Lipschitzness of pcat programs.
However, as mentioned previously, local Lipschitzness is a relational property
(hyperproperty) and computing upper bounds on k can get expensive.

The problem can be made tractable by exploiting a known relationship be-
tween Lipschitz constants and directional directives of a function. Let f be a
function of type Rm Ñ Rn, and let S Ă Rm be a convex bounded set. From
[58] we know that the local Lipschitz constant of f in the region S can be upper
bounded by the maximum value of the norm of the directional directives of f in S,
where the directional directive, informally, is the derivative of f in the direction
of some vector v. Since f is a vector-valued function (i.e., mapping vectors to vec-
tors), the derivative (including directional derivative) of f appears as a matrix of

the form, J “

»

–

By1
Bx1

... By1
Bxm

... ...
Byn
Bx1

... Byn
Bxm

fi

fl, referred to as the Jacobian matrix of f (with x and

y referring to the input and output of f). Moreover, to compute the norm of J, i.e.
‖J‖, we use the operator norm, ‖J‖ “ inftc ě 0 | ‖Jv‖ ď c‖v‖ for all v P Rmu.
Intuitively, thinking of a matrix M as a linear operator mapping between two
vector spaces, the operator norm of M measures the maximum amount by which
a vector gets “stretched” when mapped using M .

For piecewise linear functions with a finite number of “pieces”(i.e., the type
of functions that can be computed by cat), using lemma 3.3 from [58], we can
compute an upper bound on the Lipschitz constant by computing the opera-
tor norm of the Jacobian of each linear piece, and picking the maximum value.
Since each piece of the function is linear, computing the Jacobian for a piece is
straightforward. But the number of pieces in piecewise linear functions repre-
sented by NNs (or cat programs) can be exponential in the number of layers in
the NN, even in a bounded region S. Instead of computing the Jacobian for each
piece, we instead define a static analysis inspired by the Fast-Lip algorithm pre-
sented in [57] that computes lower and upper bounds of each element (i.e., each
partial derivative) appearing in the Jacobian. Since our analysis is sound, such
an interval includes all the possible values of the partial derivative in a given
convex region S. We describe this Jacobian analysis in the rest of the section.

3.1 Instrumented cat Semantics

We define an instrumented denotational semantics for cat (the non-probabilistic
sublanguage of pcat) in Figure 3 that computes Jacobians for a particular pro-
gram path, in addition to the standard meaning of the program (as defined in

Figure 2). The semantics are notated by |J¨K
D

(notice the subscript D). Pro-
gram states, ΣD , are pairs of maps such that the first element of each pair

10 R. Mangal et al.

ΣD fiΣ ˆ pV Ñ pp
Ť

m,nPNpRq
mˆn

q ˆ V q
|JeK

D
: ΣD Ñ

Ť

nPN R
n
ˆ pV Ñ pp

Ť

m,nPNpRq
mˆn

q

­Jw ¨ x` βK
D
pσD q “ let l “ dimpwq1 in

let m “ dimpwq2 in
let n “ dimpσD

2 pxq1q2 in
let a “ Jw ¨ x` βKpσD

1 q in
let b “
„

m
ř

i“1

wj,i ¨ pppσD
2 pxqq1qi,kq

ˇ

ˇ

ˇ

ˇ

j P t1, .., lu, k P t1, ..., nu



in

pa, bq

|JbK
D

: ΣD Ñ ttt,ffu
|JbK

D
pσD q “ JbKpσD

1 q

~Js´K
D

: ΣD Ñ ΣD

­JskipK
D
pσD q “σD

­Jy Ð w ¨ x` βK
D
pσD q “ pσD

1 ry ÞÑ p ­Jw ¨ x` βK
D
pσD qq1s, σD

2 ry ÞÑ pp ­Jw ¨ x` βK
D
pσD qq2, σD

2 pxq2qsq
­Js1; s2K

D
pσD q “ }Js2K

D
p}Js1K

D
pσD qq

­Jif b then s1 else s2K
D
pσD q “ if p|JbK

D
pσD q “ ttq then }Js1K

D
pσD q else }Js2K

D
pσD q

Fig. 3: cat denotational semantics instrumented with Jacobians

belongs to the previously defined set Σ of states, while the second element
of each pair is a map that records the Jacobians. The second map is of type
V Ñ pp

Ť

m,nPNpRqmˆnq ˆ V q, mapping each variable in V to a pair of values,
namely, a Jacobian which is matrix of reals, and a variable in V . A cat program
can map multiple input vectors to multiple output vectors, so one can compute
a Jacobian of the cat program for each output vector with respect to each in-
put vector. This explains the type of the second map in ΣD - for each variable,
the map records the corresponding Jacobian of the cat program computed with
respect to the input variable that forms the second element of the pair.

Before explaining the semantics in Figure 3, we clarify the notation used in
the figure. We use subscript indices, starting from 1, to refer to elements in a pair

or a tuple. For instance, we can read ppσD
2 pxqq1qi,k in the definition of ­Jw ¨ x` βK

D

as follows - σD
2 refers to the second map of the σD pair, σD

2 pxq1 extracts the first
element (i.e., the Jacobian matrix) of the pair mapped to variable x, and then
finally, we extract the element at location pi, kq in the Jacobian matrix. Also, we
use let expressions in a manner similar to ML, and list comprehensions similar to
Haskell (though we extend the notation to handle matrices). dim is polymorphic
and returns the dimensions of vectors and matrices.

The only interesting semantic definitions are the ones associated with the
expression w ¨ x` β and the statement y Ð w ¨ x` β. The value associated with
any variable in a cat program is always of the form, wnpwn´1p...pw2pw1 ¨ x `
β1q`β2q...q`βn´1q`βn “ wn ¨wn´1 ¨ ... ¨w2 ¨w1 ¨x`wn ¨wn´1 ¨ ... ¨w2 ¨β1`wn ¨
wn´1 ¨ ... ¨w3 ¨β2` ...`βn. The derivative (the Jacobian) of this term with respect
to x is wn ¨ wn´1 ¨ ... ¨ w2 ¨ w1. Thus, calculating the Jacobian of a cat program
for a particular output variable with respect to a particular input variable only

Probabilistic Lipschitz Analysis of Neural Networks 11

ΣB fiV Ñ
Ť

nPNpRˆ Rqn
ΣL fiΣB ˆ pV Ñ pp

Ť

m,nPNpRˆ Rqmˆnq ˆ pV Y tK,Juqq
JeK

L
: ΣL Ñ pp

Ť

nPNpRˆ Rqnq ˆ p
Ť

m,nPNpRˆ Rqmˆnqq
Jw ¨ x` βK

L
pσLq “ let l “ dimpwq1 in

let m “ dimpwq2 in
let n “ dimpσL

2 pxq1q2 in
let a “ Jw ¨ x` βK

B
pσL

1 q in

let b “
»

—

—

—

—

—

—

—

—

—

—

—

–

pp
m
ř

i“1^wj,iě0

wj,i ¨ pppσL
2 pxqq1qi,kq1`

m
ř

i“1^wj,iă0

wj,i ¨ pppσL
2 pxqq1qi,kq2q

p
m
ř

i“1^wj,iě0

wj,i ¨ pppσL
2 pxqq1qi,kq2`

m
ř

i“1^wj,iă0

wj,i ¨ pppσL
2 pxqq1qi,kq1qq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j P t1, .., lu, k P t1, ..., nu

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

in

pa, bq

Ů

L : ΣL ˆΣL Ñ ΣL

σL
Ů

L σ̃
L “ppσL

1

Ů

B σ
L
2 q,

pλv. let pm,nq “ dimpσL
2 pvqq in

if pσL
2 pvq2 “ σ̃L

2 pvq2q then
prpmintpσL

2 pvq1qi,j , pσ̃
L
2 pvq1qi,ju,maxtpσL

2 pvq1qi,j , pσ̃
L
2 pvq1qi,juq |

i P t1, ...,mu, j P t1, ..., nus, σL
2 pvq2q

else prp´8,8q | i P t1, ...,mu, j P t1, ..., nus,Jq

JbK
L

: ΣL Ñ ttt,ff ,Ju

JbK
L
pσLq “ JbK

B
pσL

1 q

Js´K
L

: ΣL Ñ ΣL

JskipK
L
pσLq “σL

Jassert bK
L
pσLq “ ppJassert bK

B
pσL

1 qq, σ
L
2 q

Jy Ð w ¨ x` βK
L
pσLq “ pσL

1 ry ÞÑ pJw ¨ x` βK
L
pσLqq1s, σL

2 ry ÞÑ ppJw ¨ x` βK
L
pσLqq2, σL

2 pxq2qsq

Js1; s2K
L
pσLq “ Js2K

L
pJs1K

L
pσLqq

Jif b then s1 else s2K
L
pσLq “ if pJbK

L
pσLq “ ttq then Js1K

L
pσLq

else if pJbK
L
pσLq “ ffq then Js2K

L
pσLq

else Js1K
L
pJassert bK

L
pσLqq

Ů

L Js2K
L
pJassert bK

L
pσLqq

Fig. 4: cat abstract semantics for Jacobian analysis

requires multiplying the relevant weight matrices together and the bias terms
can be ignored. This is exactly how we define the semantics of w ¨ x` β.

3.2 Jacobian Analysis

The abstract version of the instrumented denotational semantics of cat is defined
in Figure 4. The semantics are notated by J¨K

L
(notice the subscript L). The

analysis computes box-shaped overapproximations of all the possible outcomes
of a cat program when executed on inputs from a box-shaped bounded set. This
is similar to standard interval analysis except that cat operates on data of base
type of real vectors. The analysis maintains bounds on real vectors by computing

12 R. Mangal et al.

intervals for every element of a vector. In addition, this analysis also computes an
overapproximation of all the possible Jacobian matrices. Note that the Jacobian
matrices computed by the instrumented semantics of cat only depend on the
path through the program, i.e. the entries in the computed Jacobian are control-
dependent on the program inputs but not data-dependent. Consequently, for
precision, it is essential that our analysis exhibit some notion of path-sensitivity.
We achieve this by evaluating the branch conditions using the computed intervals
and abstractly interpreting both the branches of an if then else statement only
if the branch direction cannot be resolved.

An abstract program state, σL P ΣL , is a pair of maps. The first map in an
abstract state maps variables in V to abstract vectors representing a box-shaped
set of vectors. Each element of an abstract vector is pair of reals representing a
lower bound and an upper bound on the possible values (first element of the pair
is the lower bound and second element is the upper bound). The second map in
an abstract state maps variables in V to pairs of abstract Jacobian matrices and
elements in V extended with a top and a bottom element. Like abstract vectors,
each element of an abstract Jacobian matrix is a pair of reals representing lower
and upper bounds of the corresponding partial derivative.

The definition of the abstract semantics is straightforward but we describe the
abstract semantics for affine expressions and for conditional statements. First,
we discuss affine expressions. As a quick reminder of the notation, a term of
the form pppσL

2 pxqq1qi,kq1 represents the lower bound of the element at location
pi, kq in the abstract Jacobian associated with variable x. Now, recall that the
instrumented semantics computes Jacobians simply by multiplying the weight
matrices. In the abstract semantics, we multiply abstract Jacobians such that
the bounds on each abstract element in the output abstract Jacobian reflect the
minimum and maximum possible values that the element could take given the
input abstract Jacobians. The abstract vectors for the first map are computed
using the abstract box semantics (notated by J¨K

B
), defined in Appendix G.For

conditional statements, as mentioned previously, we first evaluate the branch
condition using the abstract state. If this evaluation returns J, meaning that the
analysis was unable to discern the branch to be taken, we abstractly interpret
both the branches and then join the computed abstract states. Note that before
abstractly interpreting both branches, we update the abstract state to reflect
that the branch condition should hold before executing s1 and should not hold
before executing s2. However, the assert b statement is not a part of the cat
language, and only used for defining the abstract semantics. The join operation
(
Ť

L) is as expected, except for one detail that we want to highlight - in case
the Jacobians along different branches are computed with respect to different
input variables we make the most conservative choice when joining the abstract
Jacobians, bounding each element with p´8,8q as well as recording J for the
input variable.

Next, we define the concretization function (γL) for the abstract program
states that maps elements in ΣL to sets of elements in ΣD and then state the
soundness theorem for our analysis.

Probabilistic Lipschitz Analysis of Neural Networks 13

Definition 5. (Concretization function for Jacobian analysis)
γLpσLq “ tσD | p

Ź

vPV .σ
L
1 pvq1 ď σD

1 pvq ď σL
1 pvq2q^p

Ź

vPV .pσ
L
2 pvq1q1 ď σD

2 pvq1 ď
pσL

2 pvq1q2q ^ σ
D
2 pvq2 P γV pσ

L
2 pvq2qu where γV pvq “ v and γV pJq “ V

Theorem 6. (Soundness of Jacobian analysis)

@p P s´, σL P ΣL . t|JpK
D
pσD q | σD P γLpσLqu Ď γLpJpK

L
pσLqq

Proof. Appendix C �

We next define the notion of operator norm of an abstract Jacobian. This
definition is useful for stating Corollary 8. Given an abstract Jacobian, we con-
struct a matrix J such that every element of J is the maximum of the absolute
values of the corresponding lower and upper bound in the abstract Jacobian.

Definition 7. (Operator norm of abstract Jacobian)
If J “ σL

2 pvq1 for some σL and v, and pm,nq “ dimpJq then ‖J‖
L

is defined as,
‖J‖

L
“ ‖rmaxt|pJk,lq1|, |pJk,lq2|u | k P t1, ...,mu, l P t1, ..., nus‖

Corollary 8 shows that the operator norm of the abstract Jacobian computed
by the analysis for some variable v is an upper bound of the operator norms of
all the Jacobians possible for v when a program p is executed on the set of inputs
represented by γLpσLq, for any program p and any abstract state σL .

Corollary 8. (Upper bound of Jacobian operator norm)
@p P s´, σL P ΣL , v P V.

maxt
∥∥∥pp|JpK

D
pσD qq2qpvq1

∥∥∥ | σD P γLpσLqu ď ‖ppJpK
L
pσLqq2pvqq1‖

L

Proof. Appendix D �

3.3 Box Analysis

The box analysis abstracts the lowered cat semantics instead of the instrumented
semantics. Given a box-shaped set of input states, it computes box-shaped over-
approximations of the program output in a manner similar to the Jacobian
analysis. In fact, the box analysis only differs from the Jacobian analysis in not
computing abstract Jacobians. We define a separate box analysis to avoid com-
puting abstract Jacobians when not needed. The concretization function (γB)
for the box analysis and the soundness theorem are stated below. However, we
do not provide a separate proof of soundness for the box analysis since such
a proof is straightforward given the soundness proof for the Jacobian analysis.
Details of the box analysis are available in Appendix G.

Definition 9. (Concretization function for box analysis)
γBpσB q “ tσ |

Ź

vPV .σ
B pvq1 ď σpvq ď σB pvq2u

Theorem 10. (Soundness of box analysis)

@p P s´, σB P ΣB . t|JpKpσq|σ P γBpσB qu Ď γBpJpK
B
pσB qq

14 R. Mangal et al.

4 Algorithms

We now describe our proof-search algorithms for probabilistic Lipschitzness of
NNs. The PROLIP algorithm (Section 4.1) is an algorithmic primitive that can be
used by a proof-search algorithm for probabilistic Lipschitzness. We provide the
sketch of such an algorithm using PROLIP in Section 4.2.

4.1 PROLIP Algorithmic Primitive

The PROLIP algorithm expects a pcat program p of the form z ø Np0, 1q; g; f as
input, where g and f are cat programs. z ø Np0, 1q; g represents the generative
model and f represents the NN under analysis. Other inputs expected by PROLIP

are a box-shaped region zB in z and the input variable as well as the output
variable of f (in and out respectively). Typically, NNs consume a single input
and produce a single output. The outputs produced by PROLIP are (i) kU , an
upper bound on the local Lipschitzness constant of f in a box-shaped region of in
(say inB) that overapproximates the set of in values in the image of zB under g,
(ii) d, the maximum distance between in values in inB , (iii) vol, the probabilistic
volume of the region zB ˆ zB with respect to the distribution Np0, 1q ˆNp0, 1q.

Algorithm 1: PROLIP algo-
rithmic primitive

Input:
p: pcat program.
zB : Box in z.
in: Input variable of f .
out: Output variable of f .

Output:
kU : Lipschitz constant.
d: Max in distance.
vol: Mass of zB ˆ zB .

1 σB := λv.p´8,8q;
2 σ̃B := JgK

B
pσB rz ÞÑ zBsq;

3 σL := pσ̃B , λv.pI, vqq;
4 σ̃L := JfK

L
pσLq;

5 if pσ̃L
2 poutq2 “ inq then

6 J := σ̃L
2 poutq1;

7 kU := ‖J‖
L

;

8 else
9 kU := 8;

10 d := DIAG LENpσ̃B pinqq;
11 vol := VOLpN ˆN, zB ˆ zBq;
12 return pkU , d, volq;

PROLIP starts by constructing an ini-
tial abstract program state (σB) suitable
for the box analysis (line 1). σB maps ev-
ery variable in V to abstract vectors with
elements in the interval p´8,8q. We as-
sume that for the variables accessed in
p, the length of the abstract vectors is
known, and for the remaining variables we
just assume vectors of length one in this
initial state. Next, the initial entry in σB

for z is replaced by zB , and this updated
abstract state is used to perform box anal-
ysis of g, producing σ̃B as the result (line
2). Next, σ̃B is used to create the initial
abstract state σL for the Jacobian analy-
sis of f (line 3). Initially, every variable is
mapped to an identity matrix as the Jaco-
bian and itself as the variable with respect
to which the Jacobian is computed. The
initial Jacobian is a square matrix with
side length same as that of the abstract
vector associated with the variable being
mapped. Next, we use σL to perform Ja-
cobian analysis of f producing σ̃L as the
result (line 4). If the abstract Jacobian
mapped to out in σ̃L is computed with
respect to in (line 5), we proceed down

Probabilistic Lipschitz Analysis of Neural Networks 15

the true branch else we assume that nothing is known about the required Jaco-
bian and set kU to 8 (line 9). In the true branch, we first extract the abstract
Jacobian and store it in J (line 6). Next, we compute the operator norm of the
abstract Jacobian J using Definition 7, giving us the required upper bound on
the Lipschitz constant (line 7). We then compute the maximum distance between
in values in the box described by σ̃B pinq using the procedure DIAG LEN that just
computes the length of the diagonal of the hyperrectangle represented by σ̃B pinq
(line 10). We also compute the probabilistic mass of region zBˆ zB with respect
to the distribution Np0, 1qˆNp0, 1q (line 11). This is an easy computation since
we can form an analytical expression and just plug in the boundaries of zB . Fi-
nally, we return the tuple pkU , d, volq (line 12). This PROLIP algorithm is correct
as stated by the following theorem.

Theorem 11. (Soundness of PROLIP)
Let p “ z ø Np0, 1q; g; f where g, f P s´, pkU , d, volq “ PROLIPpp, zBq, z R
outvpgq, z R outvpfq, x P invpfq, and y P outvpfq then, @σ0 P Σ.

Pr
σ,σ1„JpKpσ0q

pp‖σpyq ´ σ1pyq‖ ď kU ¨‖σpxq ´ σ1pxq‖q^pσpzq, σ1pzq P γpzBqqq ě vol

Proof. Appendix E �

This theorem is applicable for any program p in the required form, such that
g and f are cat programs, variable z is not written to by g and f (outvp¨q gives
the set of variables that a program writes to, invp¨q gives the set of live variables
at the start of a program). It states that the result pkU , d, volq of invoking PROLIP

on p with box zB is safe, i.e., with probability at least vol, any pair of program
states (σ, σ1), randomly sampled from the distribution denoted by JpKpσ0q, where
σ0 is any initial state, satisfies the Lipschitzness property (with constant kU) and
has z variables mapped to vectors in the box zB .

4.2 Sketch of Proof-Search Algorithm

We give a sketch of a proof-search algorithm that uses the PROLIP algorithm as a
primitive. The inputs to such an algorithm are a pcat program p in the appropri-
ate form, the constants r, ε, and k that appear in the formulation of probabilistic
Lipschitzness, and a resource bound gas that limits the number of times PROLIP
is invoked. This algorithm either finds a proof or runs out of gas. Before describ-
ing the algorithm, we recall the property we are trying to prove, stated as follows,

Pr
σ,σ1„JpKpσ0q

p‖σpyq ´ σ1pyq‖ ď k ˚ ‖σpxq ´ σ1pxq‖
ˇ

ˇ ‖σpxq ´ σ1pxq‖ ď rq ě 1´ ε

The conditional nature of this probabilistic property complicates the design
of the proof-search algorithm, and we use the fact that PrpA | Bq “ PrpA ^
Bq{PrpBq for computing conditional probabilities. Accordingly, the algorithm
maintains three different probability counters, namely, prl, prr, and prf , which
are all initialized to zero as the first step (line 1).

16 R. Mangal et al.

Algorithm 2: Checking Proba-
bilistic Robustness.

Input:
p: pcat program.
r: Input closeness bound.
ε: Probabilistic bound.
k: Lipschitz constant.
gas: Iteration bound.

Output: ttt, ?u
1 prl := 0; prr := 0; prf := 0;
2 α := INIT AGENTpdimpzq, r, ε, kq;
3 while pprl ă p1´ εqq ^ pgas ‰ 0q

do
4 gas := gas´ 1;
5 zB := CHOOSEpαq;
6 pkU , d, volq :=

PROLIPpp, zB , x, yq;
7 UPDATE AGENTpα, kU , d, volq;
8 if d ď r then
9 prr := prr ` vol;

10 if kU ď k then
11 prl := prl ` vol;
12 prf := prf {prr;

13 end while
14 if gas “ 0 then
15 return ? ;
16 else
17 return tt ;

prl records the probability that
a randomly sampled pair of pro-
gram states (σ, σ1) satisfies the
Lipschitzness and closeness prop-
erty (i.e., p‖σpyq ´ σ1pyq‖ ď k ˚
‖σpxq ´ σ1pxq‖q ^ p‖σpxq ´ σ1pxq‖ ď
rq). prr records the probability that
a randomly sampled pair of program
states satisfies the closeness property
(i.e., ‖σpxq ´ σ1pxq‖ ď r). prf tracks
the conditional probability which is
equal to prl{prr. After initializing the
probability counters, the algorithm
initializes an “agent” (line 2), which
we think of as black-box capable of
deciding which box-shaped regions in
z should be explored. Ideally, we want
to pick a box such that - (i) it has a
high probability mass, (ii) it satisfies,
both, Lipschitzness and closeness. Of
course, we do not know a priori if Lip-
schitzness and closeness will hold for
a particular box in z, the crux of the
challenge in designing a proof-search
algorithm. Here, we leave the algo-
rithm driving the agent’s decisions
unspecified (and hence, refer to the
proof-search algorithm as a sketch).
After initializing the agent, the algo-
rithm enters a loop (lines 3 - 13) that

continues till we have no gas left or we have found a proof. Notice that if
pprl ě p1 ´ εqq, the probabilistic Lipschitzness property is certainly true, but
this is an overly strong condition that maybe false even when probabilistic Lip-
schitzness holds. For instance, if ε was 0.1 and the ground-truth value of prr
for the program p was 0.2, then prl could never be ě 0.9, even if probabilistic
Lipschitzness holds. However, continuing with our algorithm description, after
decrementing gas (line 4), the algorithm queries the agent for a box in z (line 5),
and runs PROLIP with this box, assuming x as the input variable of f and y as
the output (line 6). Next, the agent is updated with the result of calling PROLIP,
allowing the agent to update it’s internal state (line 7). Next, we check if for the
currently considered box (zB), the maximum distance between the inputs to f
is less than r (line 8), and if so, we update the closeness probability counter prr
(line 9). We also check if the upper bound of the local Lipschitzness constant
returned by PROLIP is less than k (line 10), and if so, update prl (line 11) and

Probabilistic Lipschitz Analysis of Neural Networks 17

prf (line 12). Finally, if we have exhausted the gas, we were unable to prove the
property, otherwise we have a proof of probabilistic Lipschitzness.

4.3 Discussion

Informally, we can think of the Jacobian analysis as computing two different
kinds of “information” about a neural network: (i) an overapproximation of the
outputs, given a set of inputs σB , using the box analysis; (ii) an upper bound
on the local Lipschitz constant of the neural network for inputs in σB . The
results of the box analysis are used to overapproximate the set of “program
paths” in the neural network exercised by inputs in σB , safely allowing the
Jacobian computation to be restricted to this set of paths. Consequently, it is
possible to replace the use of box domain in (i) with other abstract domains like
zonotopes [30] or DeepPoly [49] for greater precision in overapproximating the
set of paths. In contrast, one needs to be very careful with the abstract domain
used for the analysis of the generative model g in Algorithm 1, since the choice
of the abstract domain has a dramatic effect on the complexity of the volume
computation algorithm VOL invoked by the PROLIP algorithm. While Gaussian
volume computation of boxes is easy, it is hard for general convex bodies [4,25,23]
unless one uses randomized algorithms for volume computation [24,20]. Finally,
note that the design of a suitable agent for iteratively selecting the input regions
to analyze in Algorithm 2 remains an open problem.

5 Empirical Evaluation

We aim to empirically evaluate the computational complexity of PROLIP. We
ask the following questions: (RQ1) Given a program, is the run time of PROLIP
affected by the size and location of the box in z? (RQ2) What is the run time
of PROLIP on popular generative models and NNs?

5.1 Experimental Setup

We implement PROLIP in Python, using Pytorch, Numpy, and SciPy for the core
functionalities, and Numba for program optimization and parallelization. We
run PROLIP on three pcat programs corresponding to two datasets: the MNIST
dataset and the CIFAR-10 dataset. Each program has a generator network g and
a classifier network f . The g networks in each program consist of five convolution
transpose layers, four batch norm layers, four ReLU layers, and a tanh layer. The
full generator architectures and parameter weights can be seen in [48]. The f
network for the MNIST program consists of three fully connected layers and two
ReLU layers. For the CIFAR-10 dataset, we create two different pcat programs:
one with a large classifier architecture and one with a small classifier architecture.
The f network for the large CIFAR-10 program consists of seven convolution
layers, seven batch norm layers, seven ReLU layers, four maxpool layers, and one
fully connected layer. The f network for the small CIFAR-10 program consists

18 R. Mangal et al.

of two convolution layers, two maxpool layers, two ReLU layers, and three fully
connected layers. The full classifier architectures and parameter weights for the
MNIST and large CIFAR-10 program can be seen in [17].

In our experiments, each generative model has a latent space dimension
of 100, meaning that the model samples a vector of length 100 from a multi-
dimensional normal distribution, which is then used by the generator network.
We create five random vectors of length 100 by randomly sampling each element
of the vectors from a normal distribution. For each vector, we create three differ-
ent sized square boxes by adding and subtracting a constant from each element
in the vector. This forms an upper and lower bound for the randomly-centered
box. The constants we chose to form these boxes are 0.00001, 0.001, and 0.1.
In total, 15 different data points are collected for each program. We ran these
experiments on a Linux machine with 32 vCPU’s, 204 GB of RAM, and no GPU.

5.2 Results

(a) (b) (c)

Fig. 5: PROLIP run times

RQ1. As seen in Figures 5a and 5b, there is a positive correlation between
box size and run time of PROLIP on the MNIST and small CIFAR-10 programs.
This is likely because as the z input box size increases, more branches in the
program stay unresolved, forcing the analysis to reason about more of the pro-
gram. However, z box size does not seem to impact PROLIP run time on the
large CIFAR-10 program (Figure 5c) as the time spent in analyzing convolution
layers completely dominates any effect on run time of the increase in z box size.

RQ2. There is a significant increase in the run time of PROLIP for the large
CIFAR-10 program compared to the MNIST and small CIFAR-10 programs,
and this is due to the architectures of their classifiers. When calculating the
abstract Jacobian matrix for an affine assignment statement (y Ð w ¨ x ` β),
we multiply the weight matrix with the incoming abstract Jacobian matrix. The
dimensions of a weight matrix for a fully connected layer is NinˆNout where Nin
is the number of input neurons and Nout is the number of output neurons. The
dimensions of a weight matrix for a convolution layer are Cout ¨Hout ¨WoutˆCin ¨

Probabilistic Lipschitz Analysis of Neural Networks 19

Hin ¨Win where Cin, Hin, and Win are the input’s channel, height, and width
dimensions and Cout, Hout, and Wout are the output’s channel, height, and width
dimensions. For our MNIST and small CIFAR-10 classifiers, the largest weight
matrices formed had dimensions of 784 ˆ 256 and 4704 ˆ 3072 respectively. In
comparison, the largest weight matrix calculated in the large CIFAR-10 classifier
had a dimension of 131072 ˆ 131072. Propagating the Jacobian matrix for the
large CIFAR-10 program requires first creating a weight matrix of that size,
which is memory intensive, and second, multiplying the matrix with the incoming
abstract Jacobian matrix, which is computationally expensive. The increase in
run time of the PROLIP algorithm can be attributed to the massive size blow-up
in the weight matrices computed for convolution layers.

Other Results. Table 1 shows the upper bounds on local Lipschitz constant
computed by the PROLIP algorithm for every combination of box size and pcat
program considered in our experiments. The computed upper bounds are com-
parable to those computed by the Fast-Lip algorithm from [57] as well as other
state-of-the-art approaches for computing Lipschitz constants of neural networks.
A phenomenon observed in our experiments is the convergence of local Lipschitz
constants to an upper bound, as the z box size increases. This occurs because
beyond a certain z box size, for every box in z, the output bounds of g repre-
sent the entire input space for f . Therefore any increase in the z box size, past
the tipping point, results in computing an upper bound on the global Lipschitz
constant of f .

Box Size MNIST Large CIFAR Small CIFAR
Lip Constant Lip Constant Lip Constant

1e-05 1.683e1 5.885e14 3.252e5
0.001 1.154e2 8.070e14 4.218e5
0.1 1.154e2 8.070e14 4.218e5

1e-05 1.072e1 5.331e14 1.814e5
0.001 1.154e2 8.070e14 4.218e5
0.1 1.154e2 8.070e14 4.218e5

1e-05 1.460e1 6.740e14 2.719e5
0.001 1.154e2 8.070e14 4.218e5
0.1 1.154e2 8.070e14 4.218e5

1e-05 1.754e1 6.571e14 2.868e5
0.001 1.154e2 8.070e14 4.218e5
0.1 1.154e2 8.070e14 4.218e5

1e-05 1.312e1 5.647e14 2.884e5
0.001 1.154e2 8.070e14 4.218e5
0.1 1.154e2 8.070e14 4.218e5

Table 1: Local Lipschitz constants discovered by PROLIP

20 R. Mangal et al.

The run time of the PROLIP algorithm can be improved by utilizing a GPU
for matrix multiplication. The multiplication of massive matrices computed in
the Jacobian propagation of convolution layers or large fully connected layers
accounts for a significant portion of the run time of PROLIP, and the run time
can benefit from GPU-based parallelization of matrix multiplication. Another
factor that slows down our current implementation of PROLIP algorithm is the
creation of the weight matrix for a convolution layer. These weight matrices are
quite sparse, and constructing sparse matrices that hold ’0’ values implicitly can
be much faster than explicitly constructing the entire matrix in memory, which
is what our current implementation does.

6 Related Work

Our work draws from different bodies of literature, particularly literature on
verification of NNs, Lipschitz analysis of programs and NNs, and semantics and
verification of probabilistic programs. These connections and influences have been
described in detail in Section 1. Here, we focus on describing connections with
existing work on proving probabilistic/statistical properties of NNs.

[44] is the source of the probabilistic Lipschitzness property that we consider.
They propose a proof-search algorithm that (i) constructs a product program
[5], (ii) uses an abstract interpreter with a powerset polyhedral domain to com-
pute input pre-conditions that guarantee the satisfaction of the Lipschitzness
property, (iii) computes approximate volumes of these input regions via sam-
pling. They do not implement this algorithm. If one encodes the Lipschitzness
property as disjunction of polyhedra, the number of disjuncts is exponential in
the number of dimensions of the output vector. There is a further blow-up in
the number of disjuncts as we propagate the abstract state backwards.

Other works on probabilistic properties of NNs [55,56] focus on local robust-
ness. Given an input x0, and an input distribution, they compute the probability
that a random sample x1 drawn from a ball centered at x0 causes non-robust
behavior of the NN at x1 compared with x0. [55] computes these probabilities via
sampling while [56] constructs analytical expressions for computing upper and
lower bounds of such probabilities. Finally, [3] presents a model-counting based
approach for proving quantitative properties of NNs. They translate the NN as
well as the property of interest into SAT constraints, and then invoke an approx-
imate model-counting algorithm to estimate the number of satisfying solutions.
We believe that their framework may be general enough to encode our problem
but the scalability of such an approach remains to be explored. We also note
that the guarantees produced by [3] are statistical, so one is unable to claim
with certainty if probabilistic Lipschitzness is satisfied or violated.

7 Conclusion

We study the problem of algorithmically proving probabilistic Lipschitzness of
NNs with respect to generative models representing input distributions. We em-

Probabilistic Lipschitz Analysis of Neural Networks 21

ploy a language-theoretic lens, thinking of the generative model and NN, together,
as programs of the form z ø Np0, 1q; g; f in a first-order, imperative, probabilis-
tic programming language pcat. We develop a sound local Lipschitzness analysis
for cat, a non-probabilistic sublanguage of pcat that performs a Jacobian anal-
ysis under the hood. We then present PROLIP, a provably correct algorithmic
primitive that takes in a box-shaped region in the latent space of the generative
model as an input, and returns a lower bound on the volume of this region as
well as an upper bound on a local Lipschitz constant of f . Finally, we sketch a
proof-search algorithm that uses PROLIP and avoids expensive volume computa-
tion operations in the process of proving theorems about probabilistic programs.
Empirical evaluation of the computational complexity of PROLIP suggests its fea-
sibility as an algorithmic primitive, although convolution-style operations can be
expensive and warrant further investigation.

References

1. Albarghouthi, A., D’Antoni, L., Drews, S., Nori, A.V.: FairSquare: Probabilistic
verification of program fairness. Proceedings of the ACM on Programming Lan-
guages 1(OOPSLA), 80:1–80:30 (Oct 2017)

2. Alzantot, M., Sharma, Y., Elgohary, A., Ho, B.J., Srivastava, M., Chang, K.W.:
Generating Natural Language Adversarial Examples. In: Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing. pp. 2890–2896.
Association for Computational Linguistics, Brussels, Belgium (Oct 2018)

3. Baluta, T., Shen, S., Shinde, S., Meel, K.S., Saxena, P.: Quantitative Verification of
Neural Networks and Its Security Applications. In: Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security. pp. 1249–1264.
CCS ’19, Association for Computing Machinery, London, United Kingdom (Nov
2019)

4. Bárány, I., Füredi, Z.: Computing the volume is difficult. Discrete & Computational
Geometry 2(4), 319–326 (Dec 1987)

5. Barthe, G., D’Argenio, P., Rezk, T.: Secure information flow by self-composition.
In: Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004. pp.
100–114 (Jun 2004)

6. Barthe, G., Crespo, J.M., Kunz, C.: Relational Verification Using Product Pro-
grams. In: Butler, M., Schulte, W. (eds.) FM 2011: Formal Methods. pp. 200–214.
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2011)

7. Barthe, G., Espitau, T., Ferrer Fioriti, L.M., Hsu, J.: Synthesizing Probabilistic
Invariants via Doob’s Decomposition. In: Chaudhuri, S., Farzan, A. (eds.) Com-
puter Aided Verification. pp. 43–61. Lecture Notes in Computer Science, Springer
International Publishing, Cham (2016)

8. Barthe, G., Espitau, T., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.Y.: An
Assertion-Based Program Logic for Probabilistic Programs. In: Ahmed, A. (ed.)
European Symposium on Programming Languages and Systems. pp. 117–144. Lec-
ture Notes in Computer Science, Springer International Publishing, Cham (2018)

9. Barthe, G., Espitau, T., Grégoire, B., Hsu, J., Strub, P.Y.: Proving expected sen-
sitivity of probabilistic programs. Proceedings of the ACM on Programming Lan-
guages 2(POPL), 57:1–57:29 (Dec 2017)

22 R. Mangal et al.

10. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.,
Criminisi, A.: Measuring Neural Net Robustness with Constraints. In:
Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 29, pp. 2613–
2621. Curran Associates, Inc. (2016), http://papers.nips.cc/paper/

6339-measuring-neural-net-robustness-with-constraints.pdf

11. Bastani, O., Zhang, X., Solar-Lezama, A.: Probabilistic verification of fairness
properties via concentration. Proceedings of the ACM on Programming Languages
3(OOPSLA), 118:1–118:27 (Oct 2019)

12. Benton, N.: Simple relational correctness proofs for static analyses and program
transformations. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. pp. 14–25. POPL ’04, Association for
Computing Machinery, Venice, Italy (Jan 2004)

13. Carlini, N., Mishra, P., Vaidya, T., Zhang, Y., Sherr, M., Shields, C., Wag-
ner, D., Zhou, W.: Hidden Voice Commands. In: 25th USENIX Security Sym-
posium (USENIX Security 16). pp. 513–530 (2016), https://www.usenix.org/

conference/usenixsecurity16/technical-sessions/presentation/carlini

14. Carlini, N., Wagner, D.: Audio Adversarial Examples: Targeted Attacks on Speech-
to-Text. In: 2018 IEEE Security and Privacy Workshops (SPW). pp. 1–7 (May
2018)

15. Chakarov, A., Sankaranarayanan, S.: Probabilistic Program Analysis with Martin-
gales. In: Sharygina, N., Veith, H. (eds.) Computer Aided Verification. pp. 511–526.
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2013)

16. Chaudhuri, S., Gulwani, S., Lublinerman, R., Navidpour, S.: Proving programs
robust. In: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software Engineering. pp. 102–112. ES-
EC/FSE ’11, Association for Computing Machinery, Szeged, Hungary (Sep 2011)

17. Chen, A.: Aaron-xichen/pytorch-playground (May 2020), https://github.com/

aaron-xichen/pytorch-playground

18. Clarkson, M.R., Schneider, F.B.: Hyperproperties. In: 2008 21st IEEE Computer
Security Foundations Symposium. pp. 51–65 (Jun 2008)

19. Combettes, P.L., Pesquet, J.C.: Lipschitz Certificates for Neural Network Struc-
tures Driven by Averaged Activation Operators. arXiv:1903.01014 [math] (Jul
2019), http://arxiv.org/abs/1903.01014

20. Cousins, B., Vempala, S.: Gaussian Cooling and $O*̂(n3̂)$ Algorithms for Volume
and Gaussian Volume. SIAM Journal on Computing 47(3), 1237–1273 (Jan 2018)

21. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: Proceedings of the 5th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages. pp. 84–96. POPL ’78, Association for
Computing Machinery, Tucson, Arizona (Jan 1978)

22. Cousot, P., Monerau, M.: Probabilistic Abstract Interpretation. In: Seidl, H. (ed.)
European Symposium on Programming Languages and Systems. pp. 169–193. Lec-
ture Notes in Computer Science, Springer, Berlin, Heidelberg (2012)

23. Dyer, M.E., Frieze, A.M.: On the Complexity of Computing the Volume of a Poly-
hedron. SIAM Journal on Computing 17(5), 967–974 (Oct 1988)

24. Dyer, M., Frieze, A., Kannan, R.: A random polynomial-time algorithm for ap-
proximating the volume of convex bodies. Journal of the ACM 38(1), 1–17 (Jan
1991)

25. Elekes, G.: A geometric inequality and the complexity of computing volume. Dis-
crete & Computational Geometry 1(4), 289–292 (Dec 1986)

http://papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints.pdf
http://papers.nips.cc/paper/6339-measuring-neural-net-robustness-with-constraints.pdf
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/carlini
https://github.com/aaron-xichen/pytorch-playground
https://github.com/aaron-xichen/pytorch-playground
http://arxiv.org/abs/1903.01014

Probabilistic Lipschitz Analysis of Neural Networks 23

26. Fazlyab, M., Robey, A., Hassani, H., Morari, M., Pappas, G.: Efficient and
Accurate Estimation of Lipschitz Constants for Deep Neural Networks. In:
Wallach, H., Larochelle, H., Beygelzimer, A., d\textquotesingle Alché-Buc, F.,
Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems 32,
pp. 11427–11438. Curran Associates, Inc. (2019), http://papers.nips.cc/paper/
9319-efficient-and-accurate-estimation-of-lipschitz-constants-for-deep-neural-networks.

pdf

27. Fischer, M., Balunovic, M., Drachsler-Cohen, D., Gehr, T., Zhang, C., Vechev, M.:
DL2: Training and Querying Neural Networks with Logic. In: International Con-
ference on Machine Learning. pp. 1931–1941 (May 2019), http://proceedings.
mlr.press/v97/fischer19a.html

28. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: Safety and Robustness Certification of Neural Networks with Abstract
Interpretation. In: 2018 IEEE Symposium on Security and Privacy (SP). pp. 3–18
(May 2018)

29. Geldenhuys, J., Dwyer, M.B., Visser, W.: Probabilistic symbolic execution. In:
Proceedings of the 2012 International Symposium on Software Testing and Analy-
sis. pp. 166–176. ISSTA 2012, Association for Computing Machinery, Minneapolis,
MN, USA (Jul 2012)

30. Ghorbal, K., Goubault, E., Putot, S.: The Zonotope Abstract Domain Taylor1+.
In: Bouajjani, A., Maler, O. (eds.) Computer Aided Verification. pp. 627–633.
Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (2009)

31. Gibbons, J.: APLicative Programming with Naperian Functors. In: Yang, H. (ed.)
European Symposium on Programming Languages and Systems. pp. 556–583. Lec-
ture Notes in Computer Science, Springer, Berlin, Heidelberg (2017)

32. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y.: Generative Adversarial Nets. In:
Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger,
K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp.
2672–2680. Curran Associates, Inc. (2014), http://papers.nips.cc/paper/

5423-generative-adversarial-nets.pdf

33. Gouk, H., Frank, E., Pfahringer, B., Cree, M.: Regularisation of Neural Networks
by Enforcing Lipschitz Continuity. arXiv:1804.04368 [cs, stat] (Sep 2018), http:
//arxiv.org/abs/1804.04368

34. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: Proceedings of the 32nd International Confer-
ence on International Conference on Machine Learning - Volume 37. pp. 448–456.
ICML’15, JMLR.org, Lille, France (Jul 2015)

35. Jia, R., Liang, P.: Adversarial Examples for Evaluating Reading Comprehension
Systems. In: Proceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing. pp. 2021–2031. Association for Computational Linguistics,
Copenhagen, Denmark (Sep 2017)

36. Katoen, J.P., McIver, A.K., Meinicke, L.A., Morgan, C.C.: Linear-Invariant Gen-
eration for Probabilistic Programs:. In: Cousot, R., Martel, M. (eds.) Static Analy-
sis. pp. 390–406. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
(2010)

37. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An Effi-
cient SMT Solver for Verifying Deep Neural Networks. In: Majumdar, R., Kunčak,
V. (eds.) Computer Aided Verification. pp. 97–117. Lecture Notes in Computer
Science, Springer International Publishing, Cham (2017)

http://papers.nips.cc/paper/9319-efficient-and-accurate-estimation-of-lipschitz-constants-for-deep-neural-networks.pdf
http://papers.nips.cc/paper/9319-efficient-and-accurate-estimation-of-lipschitz-constants-for-deep-neural-networks.pdf
http://papers.nips.cc/paper/9319-efficient-and-accurate-estimation-of-lipschitz-constants-for-deep-neural-networks.pdf
http://proceedings.mlr.press/v97/fischer19a.html
http://proceedings.mlr.press/v97/fischer19a.html
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://arxiv.org/abs/1804.04368
http://arxiv.org/abs/1804.04368

24 R. Mangal et al.

38. Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P.,
Thakoor, S., Wu, H., Zeljić, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.: The
Marabou Framework for Verification and Analysis of Deep Neural Networks. In:
Dillig, I., Tasiran, S. (eds.) Computer Aided Verification. pp. 443–452. Lecture
Notes in Computer Science, Springer International Publishing, Cham (2019)

39. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. arXiv:1312.6114 [cs,
stat] (May 2014), http://arxiv.org/abs/1312.6114

40. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet Classification with Deep
Convolutional Neural Networks. In: Pereira, F., Burges, C.J.C., Bottou, L.,
Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25,
pp. 1097–1105. Curran Associates, Inc. (2012), http://papers.nips.cc/paper/

4824-imagenet-classification-with-deep-convolutional-neural-networks.

pdf
41. Lamport, L.: Proving the Correctness of Multiprocess Programs. IEEE Transac-

tions on Software Engineering 3(2), 125–143 (Mar 1977)
42. Latorre, F., Rolland, P., Cevher, V.: Lipschitz constant estimation of Neural Net-

works via sparse polynomial optimization. arXiv:2004.08688 [cs, stat] (Apr 2020),
http://arxiv.org/abs/2004.08688

43. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
Verifying Deep Neural Networks. arXiv:1903.06758 [cs, stat] (Mar 2019), http:

//arxiv.org/abs/1903.06758
44. Mangal, R., Nori, A.V., Orso, A.: Robustness of neural networks: A probabilistic

and practical approach. In: Proceedings of the 41st International Conference on
Software Engineering: New Ideas and Emerging Results. pp. 93–96. ICSE-NIER
’19, IEEE Press, Montreal, Quebec, Canada (May 2019)

45. Qin, Y., Carlini, N., Cottrell, G., Goodfellow, I., Raffel, C.: Imperceptible, Ro-
bust, and Targeted Adversarial Examples for Automatic Speech Recognition.
In: International Conference on Machine Learning. pp. 5231–5240 (May 2019),
http://proceedings.mlr.press/v97/qin19a.html

46. Sampson, A., Panchekha, P., Mytkowicz, T., McKinley, K.S., Grossman, D., Ceze,
L.: Expressing and verifying probabilistic assertions. In: Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion. pp. 112–122. PLDI ’14, Association for Computing Machinery, Edinburgh,
United Kingdom (Jun 2014)

47. Sankaranarayanan, S., Chakarov, A., Gulwani, S.: Static analysis for probabilis-
tic programs: Inferring whole program properties from finitely many paths. In:
Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation. pp. 447–458. PLDI ’13, Association for Computing
Machinery, Seattle, Washington, USA (Jun 2013)

48. Singh, C.: Csinva/gan-vae-pretrained-pytorch (May 2020), https://github.com/
csinva/gan-vae-pretrained-pytorch

49. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages 3(POPL),
41:1–41:30 (Jan 2019)

50. Slepak, J., Shivers, O., Manolios, P.: An Array-Oriented Language with Static
Rank Polymorphism. In: Shao, Z. (ed.) European Symposium on Programming
Languages and Systems. pp. 27–46. Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg (2014)

51. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. In: International Conference
on Learning Representations (2014), http://arxiv.org/abs/1312.6199

http://arxiv.org/abs/1312.6114
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/2004.08688
http://arxiv.org/abs/1903.06758
http://arxiv.org/abs/1903.06758
http://proceedings.mlr.press/v97/qin19a.html
https://github.com/csinva/gan-vae-pretrained-pytorch
https://github.com/csinva/gan-vae-pretrained-pytorch
http://arxiv.org/abs/1312.6199

Probabilistic Lipschitz Analysis of Neural Networks 25

52. Tsuzuku, Y., Sato, I., Sugiyama, M.: Lipschitz-margin training: Scalable certi-
fication of perturbation invariance for deep neural networks. In: Proceedings of
the 32nd International Conference on Neural Information Processing Systems. pp.
6542–6551. NIPS’18, Curran Associates Inc., Montréal, Canada (Dec 2018)

53. Virmaux, A., Scaman, K.: Lipschitz regularity of deep neural net-
works: Analysis and efficient estimation. In: Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 31, pp. 3835–
3844. Curran Associates, Inc. (2018), http://papers.nips.cc/paper/

7640-lipschitz-regularity-of-deep-neural-networks-analysis-and-efficient-estimation.

pdf

54. Wang, D., Hoffmann, J., Reps, T.: PMAF: An algebraic framework for static anal-
ysis of probabilistic programs. In: Proceedings of the 39th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation. pp. 513–528. PLDI
2018, Association for Computing Machinery, Philadelphia, PA, USA (Jun 2018)

55. Webb, S., Rainforth, T., Teh, Y.W., Kumar, M.P.: A Statistical Approach to As-
sessing Neural Network Robustness. In: International Conference on Learning Rep-
resentations (Sep 2018), https://openreview.net/forum?id=S1xcx3C5FX

56. Weng, L., Chen, P.Y., Nguyen, L., Squillante, M., Boopathy, A., Oseledets, I.,
Daniel, L.: PROVEN: Verifying Robustness of Neural Networks with a Probabilis-
tic Approach. In: International Conference on Machine Learning. pp. 6727–6736
(May 2019), http://proceedings.mlr.press/v97/weng19a.html

57. Weng, L., Zhang, H., Chen, H., Song, Z., Hsieh, C.J., Daniel, L., Boning, D.,
Dhillon, I.: Towards Fast Computation of Certified Robustness for ReLU Networks.
In: International Conference on Machine Learning. pp. 5276–5285 (Jul 2018), http:
//proceedings.mlr.press/v80/weng18a.html

58. Weng*, T.W., Zhang*, H., Chen, P.Y., Yi, J., Su, D., Gao, Y., Hsieh, C.J., Daniel,
L.: Evaluating the Robustness of Neural Networks: An Extreme Value Theory
Approach. In: International Conference on Learning Representations (Feb 2018),
https://openreview.net/forum?id=BkUHlMZ0b

59. Yuan, X., He, P., Zhu, Q., Li, X.: Adversarial Examples: Attacks and Defenses for
Deep Learning. arXiv:1712.07107 [cs, stat] (Jul 2018), http://arxiv.org/abs/

1712.07107

60. Zeiler, M.D., Krishnan, D., Taylor, G.W., Fergus, R.: Deconvolutional networks.
In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition. pp. 2528–2535 (Jun 2010)

61. Zhang, H., Zhang, P., Hsieh, C.J.: RecurJac: An Efficient Recursive Algorithm for
Bounding Jacobian Matrix of Neural Networks and Its Applications. Proceedings
of the AAAI Conference on Artificial Intelligence 33(01), 5757–5764 (Jul 2019)

62. Zhang, J.M., Harman, M., Ma, L., Liu, Y.: Machine Learning Testing: Survey,
Landscapes and Horizons. IEEE Transactions on Software Engineering pp. 1–1
(2020)

http://papers.nips.cc/paper/7640-lipschitz-regularity-of-deep-neural-networks-analysis-and-efficient-estimation.pdf
http://papers.nips.cc/paper/7640-lipschitz-regularity-of-deep-neural-networks-analysis-and-efficient-estimation.pdf
http://papers.nips.cc/paper/7640-lipschitz-regularity-of-deep-neural-networks-analysis-and-efficient-estimation.pdf
https://openreview.net/forum?id=S1xcx3C5FX
http://proceedings.mlr.press/v97/weng19a.html
http://proceedings.mlr.press/v80/weng18a.html
http://proceedings.mlr.press/v80/weng18a.html
https://openreview.net/forum?id=BkUHlMZ0b
http://arxiv.org/abs/1712.07107
http://arxiv.org/abs/1712.07107

26 R. Mangal et al.

A Proof of Lemma 3

Lemma 3. (Equivalence of semantics)
@p P s´, σ P Σ. JpKpσq “ δ

}JpKpσq

Proof. We prove this by induction on the structure of statements in s´.
We first consider the base cases:

(i) skip
By definition, for any state σ,
JskipKpσq “ δσ “ δ

­JskipKpσq

(ii) y Ð w ¨ x` β
Again, by definition, for any state σ,
Jy Ð w ¨ x` βKpσq “ δσry ÞÑJw¨x`βKpσqs “ δ

­JyÐw¨x`βKpσq

Next, we consider the inductive cases:

(iii) s´1 ; s´2

Js´1 ; s´2 Kpσq “ Eσ̃„Js´1 KpσqrJs
´
2 Ks

“ λν.
ş

σ̃PΣ
Js´1 Kpσqpσ̃q ¨ Js´2 Kpσ̃qpνq

“ λν.
ş

σ̃PΣ
δ
~Js´1 Kpσq

pσ̃q ¨ δ
~Js´2 Kpσ̃q

pνq (using inductive hypothesis)

“ λν.δ
~Js´2 Kp~Js´1 Kpσqq

pνq

“ δ
~Js´2 Kp~Js´1 Kpσqq

“ δ
­Js´1 ;s´2 Kpσq

(iv) if b then s´1 else s´2

Jif b then s´1 else s´2 Kpσq “ if pJbKpσqq then Js´1 Kpσq else Js´2 Kpσq
“ if pJbKpσqq then δ

~Js´1 Kpσq
else δ

~Js´2 Kpσq
(using inductive hypothesis)

“ δ
if pJbKpσqq then ~Js´1 Kpσq else ~Js´2 Kpσq

“ δ
­Jif pJbKpσqq then s´1 else s´2 Kpσq

�

B Proof of Corollary 4

Corollary 4. @p P s´, σ P Σ,µ P P pΣq. xJpKpµqp|JpKpσqq ě µpσq

Proof. By definition,

xJpKpµq “ Eσ„µrJpKs
“ λν.

ş

σPΣ
µpσq ¨ JpKpσqpνq

“ λν.
ş

σPΣ
µpσq ¨ δ

}JpKpσqpνq (using previous lemma)

Probabilistic Lipschitz Analysis of Neural Networks 27

Now suppose, ν “ |JpKpσ̃q. Then, continuing from above,

xJpKpµqp|JpKpσ̃qq “
ş

σPΣ
µpσq ¨ δ

}JpKpσqp
|JpKpσ̃qq

ě µpσ̃q

�

C Proof of Theorem 6

We first prove a lemma needed for the proof.

Lemma 12. (Soundness of abstract conditional checks)

@c P b, σL P ΣL . t|JcK
D
pσD q | σD P γLpσLqu Ď γCpJcK

L
pσLqq where

γCpttq “ tttu, γCpffq “ tffu, γCpJq “ ttt,ffu

Proof. We prove this by induction on the structure of the boolean expressions
in b.
We first consider the base cases:

(i) πpx,mq ě πpy, nq
By definition, Jπpx,mq ě πpy, nqK

L
pσLq “ Jπpx,mq ě πpy, nqK

B
pσL

1 q

Consider the case where, Jπpx,mq ě πpy, nqK
B
pσL

1 q “ tt, then, by the se-
mantics described in Figure 6, we know that,

σL
1 pxqmq1 ě pσ

L
1 pyqnq2q (1)

By the definition of γL (Definition 5), we also know that,

@σD P γL. pσL
1 pxq1 ď σD

1 pxq ď σL
1 pxq2q ^ pσ

L
1 pyq1 ď σD

1 pyq ď σL
1 pyq2q (2)

where the comparisons are performed pointwise for every element in the
vector.
From 1 and 2, we can conclude that,

@σD P γLpσLq. σD
1 pyqn ď pσ

L
1 pyqnq2 ď pσ

L
1 pxqmq1 ď σD

1 pxqm (3)

Now,

­Jπpx,mq ě πpy, nqK
D
pσD q “ Jπpx,mq ě πpy, nqKpσD

1 q “

if σD
1 pxqm ě σD

1 pyqn then tt else ff
(4)

From 3 and 4, we can conclude that,

@σD P γLpσLq. ­Jπpx,mq ě πpy, nqK
D
pσD q “ tt, or in other words,

t ­Jπpx,mq ě πpy, nqK
D
pσD q | σD P γLpσLqu Ď γCpJπpx,mq ě πpy, nqK

L
pσLqq

when the analysis returns tt.
We can similarly prove the case when the analysis returns ff . In case, the
analysis returns J, the required subset containment is trivially true since
γCpJq “ ttt,ffu.

28 R. Mangal et al.

(ii) πpx,mq ě 0
The proof is very similar to the first case, and we skip the details.

(iii) πpx,mq ă 0
The proof is very similar to the first case, and we skip the details.

We next consider the inductive cases:

(iv) b1 ^ b2
By the inductive hypothesis, we know that,

t}Jb1K
D
pσD q | σD P γLpσLqu Ď γCpJb1K

L
pσLqq

t}Jb2K
D
pσD q | σD P γLpσLqu Ď γCpJb2K

L
pσLqq

If Jb1K
L
pσLq “ J _ Jb2K

L
pσLq “ J, then, as per the semantics in Figure 6,

Jb1 ^ b2K
L
pσLq “ J, and the desired property trivially holds.

However, if Jb1K
L
pσLq ‰ J ^ Jb2K

L
pσLq ‰ J, then using the inductive hy-

potheses, we know that for all σD P γLpσLq, }Jb1K
D
pσD q evaluates to the same

boolean value as Jb1K
L
pσLq. We can make the same deduction for b2. So,

evaluating ­Jb1 ^ b2K
D

also yields the same boolean value for all σD P γLpσLq,
and this value is equal to Jb1 ^ b2K

L
pσLq.

(v) b
By the inductive hypothesis, we know that,

t|JbK
D
pσD q | σD P γLpσLqu Ď γCpJbK

L
pσLqq

If JbK
L
pσLq “ tt, then @σD P γLpσLq. |JbK

D
pσD q “ tt.

So, @σD P γLpσLq. ~J bK
D
pσD q “ ff , and we can conclude that,

t~J bK
D
pσD q | σD P γLpσLqu Ď γCpJ bK

L
pσLqq “ tffu.

We can similarly argue about the case when JbK
L
pσLq “ ff , and as stated

previously, the case with, JbK
L
pσLq “ J trivially holds.

�

Theorem 6. (Soundness of Jacobian analysis)

@p P s´, σL P ΣL . t|JpK
D
pσD q | σD P γLpσLqu Ď γLpJpK

L
pσLqq

Proof. We prove this by induction on the structure of statements in s´.
We first consider the base cases:

(i) skip
By definition, for any state σL ,

JskipK
L
pσLq “ σL (5)

t­JskipK
D
pσD q | σD P γLpσLqu “ tσD | σD P γLpσLqu “ γLpσLq (6)

From Equations 5 and 6,

t­JskipK
D
pσD q | σD P γLpσLqu Ď γLpJskipK

L
pσLqq (7)

Probabilistic Lipschitz Analysis of Neural Networks 29

(ii) y Ð w ¨ x` β
We first observe that when multiplying an interval pl, uq with a constant
c, if c ě 0, then the result is simply given by the interval pc ¨ l, c ¨ uq. But
if c ă 0, then the result is in the interval pc ¨ u, c ¨ lq, i.e., the use of the
lower bounds and upper bounds gets flipped. Similarly, when computing
the dot product of an abstract vector v with a constant vector w, for each
multiplication operation vi ¨wi, we use the same reasoning as above. Then,
the lower bound and upper bound of the dot product result are given by,

p
n
ř

i“1^wiě0

wi¨pviq1`
n
ř

i“1^wiă0

wi¨pviq2,
n
ř

i“1^wiě0

wi¨pviq2`
n
ř

i“1^wiă0

wi¨pviq1q

where pviq1 represents the lower bound of the ith element of v and pviq2 rep-
resents the lower bound of the ith element of v, and we assume dimpwq “
dimpvq “ n.
We do not provide the rest of the formal proof for this case since it just
involves using the definitions.

Next, we consider the inductive cases:

(iii) s´1 ; s´2
From the inductive hypothesis, we know,

L1 “ t
~Js´1 K

D
pσD q | σD P γLpσLqu Ď γLpJs´1 K

L
pσLqq (8)

L2 “ t
~Js´2 K

D
pσD q | σD P γLpJs´1 K

L
pσLqqu Ď γLpJs´2 K

L
pJs´1 K

L
pσLqqq (9)

From Equations 8 and 9, we conclude,

t
~Js´2 K

D
pσD q | σD P L1u Ď L2 Ď γLpJs´2 K

L
pJs´1 K

L
pσLqqq (10)

Rewriting, we get,

t
~Js´2 K

D
p
~Js´1 K

D
pσD qq | σD P γLpσLqu Ď γLpJs´2 K

L
pJs´1 K

L
pσLqqq (11)

and this can be simplified further as,

t
­Js´1 ; s´2 K

D
pσD q | σD P γLpσLqu Ď γLpJs´1 ; s´2 K

L
pσLqq (12)

(iv) if b then s´1 else s´2
From the inductive hypothesis, we know,

t
~Js´1 K

D
pσD q | σD P γLpσLqu Ď γLpJs´1 K

L
pσLqq (13)

t
~Js´2 K

D
pσD q | σD P γLpσLqu Ď γLpJs´2 K

L
pσLqq (14)

The conditional check can result in three different outcomes while perform-
ing the analysis - tt, ff , or J. From Lemma 12, we know that the abstract
boolean checks are sound. We analyze each of the three cases separately.

30 R. Mangal et al.

(a) tt
Since we only consider the true case, we can write,

Jif b then s´1 else s´2 K
L
pσLq “ Js´1 K

L
pσLq (15)

Also, from Lemma 12,

t
­Jif b then s´1 else s´2 K

D
pσD q | σD P γLpσLqu “ t

~Js´1 K
D
pσD q | σD P γLpσLqu (16)

From 13, 15, and 16,

t
­Jif b then s´1 else s´2 K

D
pσD q | σD P γLpσLqu Ď γLpJif b then s´1 else s´2 K

L
pσLqq (17)

(b) ff
Similar to the tt case, for the ff case, we can show,

t
­Jif b then s´1 else s´2 K

D
pσD q | σD P γLpσLqu Ď γLpJif b then s´1 else s´2 K

L
pσLqq (18)

(c) J
We first prove the following about the join (

Ů

L) operation,

γLpσLq Y γLpσ̃Lq Ď γLpσL \L σ̃Lq (19)

By definition of γL,

γLpσLq “ tσD | p
ľ

vPV

.σL
1 pvq1 ď σD

1 pvq ď σL
1 pvq2q^

p
ľ

vPV

.pσL
2 pvq1q1 ď σD

2 pvq1 ď pσ
L
2 pvq1q2q^

σD
2 pvq2 P γV pσ

L
2 pvq2qu

(20)

γLpσ̃Lq can be defined similarly.
The join operation combines corresponding intervals in the abstract
states by taking the smaller of the two lower bounds and larger of the
two upper bounds. We do not prove the following formally, but from
the definition of γL and

Ů

L, one can see that the intended property
holds.
Next, we consider the assert statements that appear in the abstract
denotational semantics for the J case.
Let us call, σL

1 “ Jassert bK
L
pσLq and σL

2 “ Jassert bK
L
pσLq.

From inductive hypothesis (13 and 14) we know,

L1 “ t
~Js´1 K

D
pσD q | σD P γLpσL

1 qu Ď γLpJs´1 K
L
pσL

1 qq (21)

L2 “ t
~Js´2 K

D
pσD q | σD P γLpσL

2 qu Ď γLpJs´2 K
L
pσL

2 qq (22)

From 19,21, and 22,

L1YL2 Ď γLpJs´1 K
L
pσL

1 qqYγLpJs
´
2 K

L
pσL

2 qq Ď γLpJs´1 K
L
pσL

1 q\Js´2 K
L
pσL

2 qq

(23)

Probabilistic Lipschitz Analysis of Neural Networks 31

Then, if we can show that,

tσD | σD P γLpσLq ^ JbKpσD q “ ttu Ď γLpσL
1 q (24)

tσD | σD P γLpσLq ^ JbKpσD q “ ffu Ď γLpσL
2 q (25)

then, from 21, 22,23,24,25, and the semantics of if b then s´1 else s´2 ,
we can say,

t
­Jif b then s´1 else s´2 K

D
pσD q | σD P γLpσLqu Ď γLpJif b then s´1 else s´2 K

L
pσLqq (26)

Now, we need to show that 24 and 25 are true. The assert statements
either behave as identity or produce a modified abstract state (see
Figure 6). When assert behaves as identity, 24 and 25 are obviously
true. We skip the proof of the case when assert produces a modified
abstract state.

�

D Proof of Corollary 8

Corollary 8. (Upper bound of Jacobian operator norm)
@p P s´, σL P ΣL , v P V.

maxt
∥∥∥pp|JpK

D
pσD qq2qpvq1

∥∥∥ | σD P γLpσLqu ď ‖ppJpK
L
pσLqq2pvqq1‖

L

Proof. From Theorem 6, we know that for any p P s´, σL P ΣL ,

t|JpK
D
pσD q | σD P γLpσLqu Ď γLpJpK

L
pσLqq (1)

Let us define, DV “ tpp|JpK
D
pσD qq2pvqq1 | σD P γLpσLqu. This is the set of all

Jacobian matrices associated with the variable v after executing p on the set of
input states, γLpσLq. Note that the set DV does not distinguish the Jacobians
on the basis of the input that we are differentiating with respect to.
Let DL

V “ tpσ̃
D
2 pvqq1 | σ̃

D P γLpJpK
L
pσLqqu, and J “ ppJpK

L
pσLqq2pvqq1.

Using Definition 5 of γL, we can show,

@d P DL
V . J1 ď d ď J2 (2)

where ď is defined pointwise on the matrices, and J1(J2) refers to the matrix of
lower(upper) bounds.
Then, from 1 and definitions of DV and DL

V , we can deduce that,

DV Ď DL
V (3)

From 2 and 3,
@d P DV . J1 ď d ď J2 (4)

32 R. Mangal et al.

Let J 1 “ rmaxt|pJk,lq1|, |pJk,lq2|u | k P t1, ...,mu, l P t1, ..., nus. Then,

@d P DV . |d| ď J 1 (5)

where |¨| applies pointwise on matrices d.
Using definition of operator norm, one can show that,

M1 ďM2 ùñ ‖M1‖ ď ‖M2‖ (6)

where M1 and M2 are matrices with ď applied pointwise.
Finally, from 5 and 6, we conclude,

@d P DV . ‖d‖ ď
∥∥J 1∥∥ “ ‖J‖ (7)

Unrolling the definitions,

maxt
∥∥∥pp|JpK

D
pσD qq2qpvq1

∥∥∥ | σD P γpσLqu ď ‖ppJpK
L
pσLqq2pvqq1‖

L
(8)

�

E Proof of Theorem 11

Theorem 11. (Soundness of PROLIP)
Let p “ z ø Np0, 1q; g; f where g, f P s´, pkU , d, volq “ PROLIPpp, zBq, z R
outvpgq, z R outvpfq, x P invpfq, and y P outvpfq then, @σ0 P Σ.

Pr
σ,σ1„JpKpσ0q

pp‖σpyq ´ σ1pyq‖ ď kU ¨‖σpxq ´ σ1pxq‖q^pσpzq, σ1pzq P γpzBqqq ě vol

Proof. We prove this theorem in two parts.

First, let us define set ΣP as, ΣP “ tσ | σ P γBpJfK
L
pJgK

B
pσB rz ÞÑ zBsqqq1qu

In words, ΣP is the concretization of the abstract box produced by abstractly
“interpreting” g; f on the input box zB . Assuming that z is not written to by g
or f , it is easy to see from the definitions of the abstract semantics in Figures
6 and 4 that, pJfK

L
pJgK

B
pσB rz ÞÑ zBsqqq1pzq “ zB , i.e., the final abstract value

of z is the same as the initial value zB . Moreover, from Theorem 8, we know
that the operator norm of the abstract Jacobian matrix, ‖J‖

L
upper bounds the

operator norm of every Jacobian of f for variable y with respect to x (since
x P invpfq, y P outvpfq) for every input in γBpJgK

B
pσB rz ÞÑ zBsqq, which itself

is an upper bound on the local Lipschitz constant in the same region.
In other words, we can say that,
@σ, σ1 P ΣP . σpzq, σ

1pzq P γpzBq ^ ‖σpyq ´ σ1pyq‖ ď kU ¨ ‖σpxq ´ σ1pxq‖.

To complete the proof, we need to show that, Pr
σ,σ1„JpKpσ0q

pσ, σ1 P ΣP q ě vol. We

show this in the second part of this proof.
Using the semantic definition of pcat (Figure 2), we know that,

JpKpσ0q “ xJfKpxJgKpJz ø Np0, 1qKpσ0qqq

Probabilistic Lipschitz Analysis of Neural Networks 33

We first analyze Jz ø Np0, 1qKpσ0q. Again using the semantic definition of pcat,
we write,

Jz ø Np0, 1qKpσ0q “ Ez„Np0,1qrλν.δσ0rz ÞÑνss

“ λν1.
ş

a
Npaq ¨ δσ0rz ÞÑaspν

1q

“ λν1.1ν1“σ0rz ÞÑas ¨Npaq
(1)

We are interested in the volume of the set Σz, defined as, Σz “ tσ | σpzq P zBu.
Using the expression for Jz ø Np0, 1qKpσ0q from above, we can now compute
the required probability as follows,

Pr
σ„JzøNp0,1qKpσ0q

pσ P Σzq “
ş

σPΣ
pJz ø Np0, 1qKpσ0qqpσq ¨ 1σPΣz

“
ş

σPΣ
p1σ“σ0rz ÞÑas ¨Npaqq ¨ 1σPΣz

“
ş

σPΣz
p1σ“σ0rz ÞÑas ¨Npaqq

“
ş

aPzB
Npaq (by uniqueness of σ0rz ÞÑ as)

“ vol1

(2)

This shows that starting from any σ0 P Σ, after executing the first statement of
p, the probability that the value stored at z lies in the box zB is vol1.
Next, we analyze Jz ø Np0, 1qKpσ0q. In particular, we are interested in the

volume of the set, |JgKpΣzq (which is notational abuse for the set t|JgKpσq | σ P
Σzu). We can lower bound this volume as follows,

Pr
σ„yJgKpJzøNp0,1qKpσ0qq

pσ P |JgKpΣzqq “
ş

σPΣ
pxJgKpJz ø Np0, 1qKpσ0qqpσq ¨ 1σP}JgKpΣzq

“
ş

σP}JgKpΣzq
xJgKpJz ø Np0, 1qKpσ0qqpσq

ě
ş

σPΣz
Jz ø Np0, 1qKpσ0qqpσq (from Corollary 4)

“ vol1 (from 2)
(3)

We can similarly show that,

Pr
σ„yJfKpyJgKpJzøNp0,1qKpσ0qqq

pσ P |JfKp|JgKpΣzqqq ě vol1 (4)

Now, σB rz ÞÑ zBs defined on line 2 of Algorithm 1 is such that
γpσB rz ÞÑ zBsq “ Σz. From Theorem 10, we can conclude that,

|JgKpΣzq Ď γpJgK
B
pσB rz ÞÑ zBsqq (5)

Similarly, from Theorem 6, we can conclude that,

|JfKp|JgKpΣzqq Ď γpJfK
L
pJgK

B
pσB rz ÞÑ zBsqq1q (6)

From 4 and 6, we conclude that,

Pr
σ„JpKpσ0q

pσ P γpJfK
L
pJgK

B
pσB rz ÞÑ zBsqqq1q ě vol1 (7)

34 R. Mangal et al.

Consequently,

Pr
σ,σ1„JpKpσ0q

pσ, σ1 P γpJfK
L
pJgK

B
pσB rz ÞÑ zBsqqq1q ě vol1 ˆ vol1 “ vol (8)

since each act of sampling is independent. �

F Translating Neural Networks Into pcat

NNs are often described as a sequential composition of “layers”, with each layer
describing the computation to be performed on an incoming vector. Many com-
monly used layers can be expressed in the pcat language. For instance, [28]
describes the translation of maxpool, convolution, ReLU, and fully connected
layers into the cat language. Here, we describe the translation of two other com-
mon layers, namely, the batchnorm layer [34] and the transposed convolution
layer (also referred to as the deconvolution layer) [60].
Batchnorm layer. A batchnorm layer typically typically expects an input x P
RCˆHˆW which we flatten, using a row-major form in to x1 P RC¨H¨W where,
historically, C denotes the number of channels in the input, H denotes the height,
and W denotes the width. For instance, given an RGB image of dimensions 28
ˆ 28 pixels, H “ 28, W “ 28, and C “ 3.

A batchnorm layer is associated with vectors m and v such that dimpmq “
dimpvq “ C where dimp¨q returns the dimension of a vector. m and v rep-
resent the running-mean and running-variance of the values in each channel
observed during the training time of the NN. A batchnorm layer is also associ-
ated with a scaling vector s1 and a shift vector s2, both also of dimension c.
For a particular element xi,j,k in the input, the corresponding output element is

s1i ¨ p
xi,j,k´mi?

vi`ε
q ` s2i where ε is a constant that is added for numerical stability

(commonly set to 1e´5). Note that the batchnorm operation produces an output
of the same dimensions as the input. We can represent the batchnorm operation
by the statement, y Ð w ¨ x1 ` β, where x1 is the flattened input, w is a weight
matrix of dimension C ¨H ¨W ˆ C ¨H ¨W and β is a bias vector of dimension
C ¨H ¨W , such that,

w “ I ¨ r
s1ti{H¨W u?
vti{H¨W u`ε

| i P t1, ..., C ¨H ¨W us

β “ r´
s1ti{H¨W u¨mti{H¨W u?

vti{H¨W u`ε
` s2

ti{H¨W u
| i P t1, ..., C ¨H ¨W us

where I is the identity matrix with dimension pC ¨H ¨W,C ¨H ¨W q, t¨u is the
floor operation that rounds down to an integer, and r | s is the list builder/com-
prehension notation.
Transposed convolution layer. A convolution layer applies a kernel or a filter
on the input vector and typically, compresses this vector so that the output vec-
tor is of a smaller dimension. A deconvolution or transposed convolution layer
does the opposite - it applies the kernel in a manner that produces a larger out-
put vector. A transposed convolution layer expects an input x P RCinˆHinˆWin

and applies a kernel k P RCoutˆCinˆKhˆKw using a stride S. For simplicity of

Probabilistic Lipschitz Analysis of Neural Networks 35

presentation, we assume that Kh “ Kw “ K and Win “ Hin. In pcat, the trans-
posed convolution layer can be expressed by the statement, y Ð w ¨ x1, where
x1 is the flattened version of input x, w is a weight matrix that we derive from
the parameters associated with the transposed convolution layer, and the bias
vector, β, is a zero vector in this case. To compute the dimensions of the weight
matrix, we first calculate the height (Hout) and width (Wout) of each channel in
the output using formulae, Hout “ Hin ¨ S `K, and Wout “Win ¨ S `K. Since
we assume Win “ Hin, we have Wout “ Hout here. Then, the dimension of w is
Cout ¨Hout ¨Wout ˆ Cin ¨Hin ¨Win, and the definition of w is as follows,

w “

»

—

—

—

—

—

—

—

—

–

let x “ ri{Couts in
let y “ rj{Cins in
let h “ 1` tppi mod Coutq ´ ptppj mod Cinq ´ 1q{Hinu¨

Hout ¨ S ` 1` pppj mod Cinq ´ 1q mod Hinq ¨ Sqq{Houtu in
let w “ 1` ppi mod Coutq ´ ptppj mod Cinq ´ 1q{Hinu¨

Hout ¨ S ` 1` pppj mod Cinq ´ 1q mod Hinq ¨ Sqq mod Hout in
if h,w P t1...Ku then kx,y,h,w else 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

i P I,
j P J

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where I “ t1, ..., Cout ¨Hout ¨Woutu and J “ t1, ..., Cin ¨Hin ¨Winu

36 R. Mangal et al.

G Details of Box Analysis

ΣB fiV Ñ
Ť

nPNpRˆ Rqn
JeK

B
: ΣB Ñ

Ť

nPNpRˆ Rqn

Jπpx, nqK
B
pσB q “σB pxqn

Jw ¨ x` βK
B
pσB q “ let m “ dimpwq1 in

let n “ dimpσB pxqq in

rpp
n
ř

j“1^wi,jě0

wi,j ¨ pσB pxqiq1`

n
ř

j“1^wi,jă0

wi,j ¨ pσB pxqiq2 ` βiq,

p
n
ř

j“1^wi,jě0

wi,j ¨ pσB pxqiq2`

n
ř

j“1^wi,jă0

wi,j ¨ pσB pxqiq1 ` βiqq | i P t1, ...,mus

JbK
B

: ΣB Ñ ttt,ff ,Ju

Jπpx,mq ě πpy, nqK
B
pσB q “ if ppσB pxqmq1 ě pσB pyqnq2q then tt

else if ppσB pxqmq2 ă pσB pyqnq1q then ff
else J

Jπpx,mq ě 0K
B
pσB q “ if ppσB pxqmq1 ě 0q then tt

else if ppσB pxqmq2 ă 0q then ff
else J

Jπpx,mq ă 0K
B
pσB q “ if ppσB pxqmq2 ă 0q then tt

else if ppσB pxqmq1 ě 0q then ff
else J

Jb1 ^ b2K
B
pσB q “ if pJb1K

B
pσB q “ J _ Jb2K

B
pσB q “ Jq then J

else Jb1K
B
pσB q ^ Jb2K

B
pσB q

J bK
B
pσB q “ if pJbK

B
pσB q “ ttq then ff

else if pJbK
B
pσB q “ ffq then tt

else J

Ů

B : ΣB ˆΣB Ñ ΣB

σB
Ů

B σ̃
B “λv. rpmintpσB pvqiq1, pσ̃B pvqiq1u,maxtpσB pvqiq2, pσ̃B pvqiq2uq |

i P t1, ...,dimpσB pvqqus

Js´K
B

: ΣB Ñ ΣB

JskipK
B
pσB q “σB

Jassert πpx,mq ě 0K
B
pσB q “σB rxm ÞÑ p0,maxtpσB pxqmq2, 0uqs

Jassert πpx,mq ă 0K
B
pσB q “σB rxm ÞÑ pmintpσB pxqmq1, 0u, 0qs

Jassert pπpx,mq ě 0qK
B
pσB q “ Jassert πpx,mq ă 0K

B
pσB q

Jassert pπpx,mq ă 0qK
B
pσB q “ Jassert πpx,mq ě 0K

B
pσB q

Jassert b̂K
B
pσB q “σB pwhere b̂ refers to all other boolean expressionsq

Jy Ð w ¨ x` βK
B
pσB q “σB ry ÞÑ Jw ¨ x` βK

B
pσB qs

Js1; s2K
B
pσB q “ Js2K

B
pJs1K

B
pσB qq

Jif b then s1 else s2K
B
pσB q “ if pJbK

B
pσB q “ ttq then Js1K

B
pσB q

else if pJbK
B
pσB q “ ffq then Js2K

B
pσB q

else Js1K
B
pJassert bK

B
pσB qq

Ů

B Js2K
B
pJassert bK

B
pσB qq

Fig. 6: cat abstract semantics for box analysis

	Probabilistic Lipschitz Analysis of Neural Networks

