
1

Observational Abstract Interpreters

RAVI MANGAL, Georgia Institute of Technology

We are interested in algorithmically finding proofs of program judgments. Some common strategies used

by program proof search algorithms include computing semantic program invariants, making hypotheses

about program behavior via dynamic checks embedded in the program, and using observations about pro-

gram behavior to assist in proof search. We present observational abstract interpreters, a new meta-theoretic

construction, that brings these three strategies for program reasoning together into a single approach. Similar

to abstract interpreters, observational abstract interpreters compute semantic program invariants. However,

in observational abstract interpreters, the invariants are permitted to be hypothetical, with program safety

ensured via dynamic checks and hypotheses are made based on observed behavior of the program.

We formalize our ideas in the context of a simple higher-order language (λS). We develop a generic

observational abstract interpreter for λS , drawing inspiration from the abstracting abstract machines (AAM)

recipe for abstract interpreter construction. Observational abstract interpreters have a monadic structure

and are capable of making hypotheses based on program observations during the computation of semantic

program invariants. We present an instantiation of the generic observational abstract interpreter for λS ,
yielding an observational variant of interval analysis for λS .

CCS Concepts: • Software and its engineering→ General programming languages;

Additional Key Words and Phrases: abstract interpreters, dynamic checks, observations

ACM Reference Format:
Ravi Mangal. 2020. Observational Abstract Interpreters. Proc. ACM Program. Lang. 1, CONF, Article 1 (Janu-
ary 2020), 28 pages.

1 INTRODUCTION
Program verification, as used colloquially, refers to the practice of algorithmically finding program

proofs, i.e., proofs of program judgments. These program judgments come in many forms, common

forms are either type-theoretic judgments like Γ ⊢ e : t saying that in context Γ program e has
type t , or program logic judgments of the form, {P }e{Q }, particularly when e is from an effectful

language, where P is a pre-condition and Q is a post-condition of e .1 Irrespective of the form of the

judgment, a common step in the proof strategy employed by proof search algorithms is to compute

semantic invariants of e which are then further used to construct the proofs of program judgments.

The use of semantic invariants is particularly common when the programs or terms e are only
partially annotated or are completely unannotated (à la Curry where programs are thought to be

terms from an untyped language and the type system is extrinsic [Reynolds 2000]). Informally, a

semantic invariant is a simplified representation of the meaning of a program and practically, one

wants these representations to be efficiently computed even when the program under analysis is

non-terminating. A unifying perspective on algorithms for computing such invariants is provided

by the theory of abstract interpretation [Cousot and Cousot 1977, 1992].

In general, the decision problems addressed by program verification are undecidable [Rice 1953].

Even in the instances where the problems are decidable, the ability of an invariant-based proof

search algorithm to find a proof (or a counterexample) crucially depends on the computed invariants.

Invariants computed by abstract interpreters, in turn, depend on the abstract semantic domain and

1
There are many connections between these two judgment forms that we do not elaborate here.

Author’s address: Ravi Mangal, Georgia Institute of Technology, rmangal3@gatech.edu.

2020. 2475-1421/2020/1-ART1 $15.00

https://doi.org/

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

https://doi.org/

1:2 Ravi Mangal

the abstract semantic function used to construct the abstract interpreter. The theory of abstract

interpretation defines language semantics as a pair of a concrete semantic domain and a semantic

function. The theory also defines the manner in which the concrete semantics should relate to an

abstract semantics so that the invariants computed using the abstract semantics can be soundly

used in the background type theory/program logic for constructing a program proof. However,

defining an abstract semantics that leads to efficient computation of useful invariants requires

creativity and theoretical expertise.

Many ideas have been presented in the literature for making the process of designing abstract

semantics “easier” - Van Horn and Might [2010] present a systematic approach for constructing

an abstract interpreter starting from abstract machine semantics of higher-order languages and

a number of follow-on works extend these ideas [Darais et al. 2017, 2015; Keidel and Erdweg

2019; Keidel et al. 2018; Sergey et al. 2013]; calculational abstract interpretation yields the abstract

semantic function automatically given the concrete semantics and the abstract semantic domain

[Cousot 1999; Darais and Horn 19ed; Reps et al. 2004; Thakur et al. 2015]; in the counterexample-

guided abstraction refinement (CEGAR) style of abstract interpretation [Clarke et al. 2003], the

designer defines a set (finite or infinite) of “correct” abstract semantics and, given a specific program

judgment, the CEGAR algorithm searches through this set for an abstract semantics that can

efficiently yield a proof (or a counterexample) of the judgment. While all these ideas have helped

make the design of effective abstract interpreters easier, the design process still involves much

human ingenuity.

A different, increasingly common, proof strategy employed by proof search algorithms is to

modify the program under study and embed it with run time or dynamic checks. This allows

making hypotheses about program behavior such that a proof of the required program judgment

can be constructed. This type of reasoning has been popularized by the gradual typing [Siek and

Taha 2006; Tobin-Hochstadt and Felleisen 2006] and hybrid typing [Flanagan 2006; Knowles and

Flanagan 2010] philosophy as well as the work on using logical abduction for program reasoning

[Calcagno et al. 2011; Dillig et al. 2012]. Ideally, we want to compute the weakest hypotheses that

allow the construction of a program proof but inferring such hypotheses is not trivial.

We are interested in the design of proof search algorithms that combine the use of semantic

invariants and dynamic checks. Apart from recent work on gradual liquid type inference [Vazou

et al. 2018] and gradual program verification [Bader et al. 2018], such a combination has been

relatively under explored formally. In this work, we present the design of a new class of abstract

interpreters that compute semantic invariants while making hypotheses about program behavior,

embedded as dynamic checks in the program. These hypotheses help the abstract interpreter

compute potentially stronger semantic invariants, at the cost of the overheads of dynamic run

time checks. A key challenge in such hypothesis-based reasoning is automatically computing the

appropriate hypothesis. Typically, the computation of these hypotheses is guided by the proof goal.

In our abstract interpreter design, we instead rely on observations about the program behavior

to infer the hypotheses. Intuitively, the idea is to make hypotheses that are consistent with the

observed behavior of the program. This observational style of reasoning motivates our use of the

term, observational abstract interpreters, to refer to the class of abstract interpreters that we propose.
The benefit of an observational reasoning style, particularly in combination with the hypotheses-

based reasoning, is that we no longer need to derive custom proof goal guided algorithms, specific

to the type theory or program logic we are working with, for computing the appropriate hypotheses.

More interestingly, such observational, hypothetical proofs, can be used to make judgments about

the program behavior in the “commonly” observed ways of using the program, even if the same

judgment cannot be proven for the program in general. On the other hand, an obvious drawback

of using program observations (instead of the proof goal) for computing hypotheses is that the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:3

i ∈ Z x ∈ Var l ∈ Lbl
a ∈ Atom ::= i | x | λ(x).e | abort
⊕ ∈ IOp ::= + | −

⊙ ∈ Op ::= ⊕ | @

e ∈ Exp ::= (a)l | (e ⊙ e)l | (if0(e){e}{e})l

Fig. 1. λS (λSA) language syntax

computed hypotheses are not guaranteed to be strong enough to allow the construction of a

program proof. In any case, we believe that this combination of invariant-based reasoning with

hypotheses-based reasoning, where the hypotheses are inferred from program observations is an

interesting point worth further exploration.

We formalize our ideas in the context of a simple higher-order language (λS). In particular,

starting from an abstract machine semantics of λS , we demonstrate the construction of a generic

observational abstract interpreter for λS , and in the process, we formally define the notion of

program observations as well as the notion of correctness or soundness for an observational abstract

interpreter. Our formal development is heavily inspired by the abstracting abstract machines (AAM)

[Van Horn and Might 2010] style of abstract interpreter construction. Observational abstract

interpreters are structured as monadic abstract interpreters [Darais et al. 2017, 2015; Sergey et al.

2013] that reify the notion of an AAM-style interpreter. We believe that the recipe we present here

for constructing observational abstract interpreters of λS can also be applied to other languages.

Our main contributions are as follows - (i) we propose observational abstract interpreters, a

synthesis of invariant-based reasoning about programs with hypothesis-based reasoning and obser-

vational program reasoning, (ii) we formally construct a generic observational abstract interpreter

for λS , a higher-order language, (iii) we present an instantiation of the generic observational abstract
interpreter for λS , yielding an observational interval analysis for programs in λS .

2 LANGUAGE DEFINITION
We present our ideas with the help of λS , a higher-order language with built-in integers and

conditionals. The language is fairly standard, and we adopt the syntax and semantics from [Darais

et al. 2015]. λS syntax is defined in Figure 1. Note that function application is explicitly represented

using the @ operator. Figure 1 also describes the syntax of λSA, which additionally allows programs

with abort expressions (the gray background color is intended to highlight that abort expressions
are only allowed in λSA programs, but not in λS programs). These abort expressions enable dy-
namic checks to be embedded in the programs. We distinguish between λS and λSA for ease of

formal presentation. We design observational abstract interpreters that are capable of analyzing λS
programs to produce hypothetical semantics invariants. These hypotheses are then embedded in

the original λS program with the help of abort expressions, producing a λSA program. Note that

every expression in a λS (λSA) is associated with a unique label, drawn from an infinitely large set

of labels (Lbl). To avoid notational clutter, we do not show the labels in the rest of the paper, but

assume that such a label always exists. Moreover, we assume the existence of a function get-Label
that accepts an expression and returns the label associated with the expression.

The semantics of λS (and λSA) are presented in Figure 2. We define the language semantics

using the formalism of abstract machines. Before describing the semantics, we make a note on the

metalanguage used in Figure 2 and the rest of the paper. Our metalanguage notation resembles

Haskell syntax, though we freely use other syntactic constructs. Function application is notated

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:4 Ravi Mangal

t ∈ Time := Exp∗

a ∈ Addr := Var ×Time
ρ ∈ Env := Var ⇀ Addr
s ∈ Store := Addr ⇀ Val

k f ∈ KFrame := Frame × Env
ka ∈ KAddr := Time
ks ∈ KStore := KAddr ⇀ KFrame × KAddr

c ∈ Clo ::= ⟨λ(x).e, ρ⟩
v ∈ Val ::= i | c | abort

f r ∈ Frame ::= □ ⊙ e | v ⊙ □ | if0(□){e}{e}
σ ∈ Σ ::= ⟨e, ρ, s,ka,ks, t⟩

(a) Type definitions
⟦·⟧A : Atom → (Env × Store ⇀ Val)

⟦i⟧A (⟨ρ, s⟩) := i
⟦x⟧A (⟨ρ, s⟩) := s (ρ (x))

⟦λ(x).e⟧
A
(⟨ρ, s⟩) := ⟨λ(x).e, ρ⟩
⟦·⟧δ : IOp → (Z × Z→ Z)

⟦+⟧δ (⟨i1, i2⟩) := i1 + i2
⟦−⟧δ (⟨i1, i2⟩) := i1 − i2

(b) Denotational semantics of atomic expressions
·⇝ · : P (Σ × Σ)

⟨e1 ⊙ e2, ρ, s,ka,ks, t⟩ ⇝ ⟨e1, ρ, s,ka,ks
′, t ′⟩ where

t ′ := (e1 ⊙ e2) :: t
ks ′ := ks[t ′ 7→ ⟨⟨□ ⊙ e2, ρ⟩,ka⟩]

⟨if0(e1){e2}{e3}, ρ, s,ka,ks, t⟩ ⇝ ⟨e1, ρ, s,ka,ks
′, t ′⟩ where

t ′ := (if0(e1){e2}{e3}) :: t
ks ′ := ks[t ′ 7→ ⟨⟨if0(□){e2}{e3}, ρ⟩,ka⟩]

⟨abort, ρ, s,ka,ks, t⟩ ⇝ ⟨abort, ρ, s, t ,ks, t⟩

⟨a, ρ, s,ka,ks, t⟩ ⇝ ⟨e, ρ ′, s, t ,ks ′, t ′⟩ where

t ′ := a :: t
⟨⟨□ ⊙ e, ρ ′⟩,ka′⟩ := ks (ka)

ks ′ := ks[t ′ 7→ ⟨⟨⟦a⟧A (⟨ρ, s⟩) ⊙ □, ρ⟩,ka
′⟩]

⟨a, ρ, s,ka,ks, t⟩ ⇝ ⟨e, ρ ′′, s ′,ka′,ks, t ′⟩ where

t ′ := a :: t
⟨⟨⟨λ(x).e, ρ ′⟩@□, ρ ′⟩,ka′⟩ := ks (ka)

ρ ′′ := ρ ′[x 7→ ⟨x , t ′⟩]
s ′ := s[⟨x , t ′⟩ 7→ ⟦a⟧A (⟨ρ, s⟩)]

⟨i2, ρ, s,ka,ks, t⟩ ⇝ ⟨i, ρ, s,ka′,ks, t ′⟩ where

t ′ := i2 :: t
⟨⟨i1 ⊕ □, ρ ′⟩,ka′⟩ := ks (ka)

i := ⟦⊕⟧δ (⟨i1, i2⟩)

⟨i, ρ, s,ka,ks, t⟩ ⇝ ⟨e, ρ ′, s,ka′,ks, t ′⟩ where

t ′ := i :: t
⟨⟨if0(□){e1}{e2}, ρ ′⟩,ka′⟩ := ks (ka)

e := if i = 0 then e1 else e2

(c) Abstract machine semantics

Fig. 2. λS (λSA) concrete semantics in the form of an abstract machine

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:5

init-States : Exp− → P (Σ)

init-States(e) := let ρ := {⟨x , ⟨x , ϵ⟩⟩ | x ∈ FV (e)} in
let init-Store := {{⟨⟨x , ϵ⟩,vx ⟩ | x ∈ FV (e)} |

∧
x ∈FV (e) vx ∈ Z} in

{⟨e, ρ, s, ϵ,⊥, ϵ⟩ | s ∈ init-Store}

⟦·⟧Cl : Exp− → P (Σ)

⟦e⟧Cl := lfp λ(x). x ∪ init-States(e) ∪ {σ2 | σ1 ∈ x ∧ σ1 ⇝ σ2}

Fig. 3. λS (λSA) collecting semantics

as f (e), where f is the function applied to e . Pairs and tuples are notated by ⟨·⟩. We reserve = to

explicitly notate equality, with := used to notate definitions, and ::= notates datatype definitions.

Wherever necessary, we explain the notation that we use.

The abstract machine semantics of λS (and λSA) is defined as a transition relation (⇝) on the set Σ
of abstract machine states. An abstract machine state is a 6-tuple consisting of a program/expression,

an environment (Env), a store for values (Store), a store for continuations (KStore) that are linked
together (similar to a call stack), the address of the next continuation (KAddr), and a time component

(Time). The abstract machine semantics presented here is similar to the CESK machine [Felleisen

and Friedman 1987], except that the continuations are threaded through the store, and the time

component is used to compute a new address for allocation in the value or continuation store. As

mentioned earlier, the abstract machine design presented here follows the design by Darais et al.,

which is itself based on work by Van Horn and Might [Van Horn and Might 2010]. Since values

and continuations are both allocated in their respective stores, by restricting the number of distinct

locations/addresses in the store, one can easily abstract the abstract machine, yielding an abstract

interpreter for the language, an observation that first appeared in [Van Horn and Might 2010].

Figure 2a defines the different components of an abstract machine state. We would like to draw

notice to the definition of Time and Addr . Time is defined as a sequence of expressions, while an

address is a pair of a variable name and time. We assume that each of the type (or set) defined here

has the structure of a lattice. The semantics of atomic expressions and primitive operations are

defined denotationally (2b), and the abstract machine semantics for compound expressions are

defined by a relation (2c). Note that if the abstract machine encounters an abort expression while

executing a λSA program, it steps to an unmodified state.

Following all these definitions, we are finally ready to define the notion of “meaning” of a

program, also referred to as collecting semantics in the abstract interpretation literature. Figure 3

defines the collecting semantics of λS (λSA). Note that the collecting semantics are not defined for all

the expressions (Exp) in our language. Instead, we only consider programs where the free variables

are of type Z, and name this set of expressions, Exp−. The meaning of a program/expression in

Exp− is described in terms of abstract machine states. Intuitively, the meaning of a program is the

set of all abstract machines states that are “reachable” from a set of “initial” states. Let us unpack

this definition. Given a program e , the definition of initial states (init-States) in Figure 3 states

that, if a program e has no free variables, then the set of initial states is just the singleton set,

{⟨e,⊥,⊥, ϵ,⊥, ϵ⟩}. For programs with free variables of type Z (set of free variables is represented
by FV), the set of initial states is defined such that all possibles ways of ”closing” the program, i.e.,

assigning values to the free variables, are represented in the set. In Figure 3, this is captured by

the definition of init-Store, which uses the set-builder notation in a nested manner. Given a free

variable x , we assume that the initial value assigned to x is stored at address ⟨x , ϵ⟩ in the store s .
Then, the collecting semantics, notated by ⟦·⟧Cl , is defined as the least fixed point of a function

of type P (Σ) → P (Σ). This function uses the definitions of init-States and the transition relation

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:6 Ravi Mangal

⇝ describing our abstract machine semantics. Defining a collecting semantics for expressions

with free variables of function type is a problem of independent interest, and by only considering

programs from Exp−, we avoid dealing with that issue in this paper.

3 MONADIC INTERPRETERS: CONCRETE AND ABSTRACT
The Van Horn-Might [Van Horn and Might 2010] style of abstract machine semantics for higher-

order languages makes it easy to refactor the abstract machine such that designing an abstract

interpreter simply becomes a matter of redefining some interfaces (expressible as type classes in

Haskell or modules in ML). Sergey et al. first noticed that the Van Horn-Might abstract machine

can be refactored using monads. That interpreters for higher-order languages can be modularized

and structured monadically has been known for a while [Liang et al. 1995; Wadler 1992], but

using the monadic structure to ease the design of abstract interpreters and simplify their proofs of

correctness has only been recently investigated [Darais et al. 2017, 2015; Keidel and Erdweg 2019;

Keidel et al. 2018; Sergey et al. 2013]. These recent advances play an important role in our design of

observational abstract interpreters. In this section, we describe how the abstract machine semantics

for λS can be modularized and expressed monadically, closely following the work of Darais et al.

We also show the manner in which the resulting monad can be instantiated to yield semantics

equivalent to the collecting semantics defined in Figure 3, as well as an abstract interpreter for an

interval analysis of λS programs.

Figure 4 describes the design of a generic monadic interpreter for programs in λS with free

variables of type Z. The design of the monadic interpreter is based on the intuition that the

computation performed by the interpreter (or the abstract machine) primarily depends on the

structure of the expression being interpreted, and the interaction with the other components of

the abstract machine state, like the environment and the store, can be hidden behind a monadic

interface. This monadic interface in defined in Figure 4a. Our metalanguage supports Haskell-like

typeclasses [Wadler and Blott 1989], and we define a typeclass
◦
m that includes standard monadic

operations like bind and return. In addition, the monad is required to support a number of get
and put operations for interacting with the abstract machine state components. Additionally, the

monad is also required to support non-deterministic choice operation ⟨+⟩. Besides the monad

typeclass, the monadic interpreter design also requires abstracting other types that the interpreter

interacts with via corresponding typeclasses. In our notation, we distinguish typeclass names from

type names by using a small circle (
◦

name) over the typeclass names. The typeclass

◦

Time has an

associated operation, tick. The typeclass
◦

Val has a number of operations associated with it that

map from values of type Z and closures to elements of types instantiating

◦

Val , and vice versa. More

details about these operations can be read in Section 4.2 of [Darais et al. 2015]. Finally, we expect

◦

Time,
◦

Val ,
◦

Addr ,
◦

Env,
◦

Store,
◦

KFrame,
◦

KAddr ,
◦

KStore, and
◦

Σ to all have a lattice structure, i.e., they

support the lattice operations ⊔, ⊓, and ⊑, as well as define lattice elements ⊤ and ⊥.

Figure 4b defines the stepm function describing a single step of the monadic interpreter. First, a

comment on notation - we use the do notation from Haskell as well as ; for sequencing monadic

operations. So x ← s1; s2 is syntactic sugar for bind(s1) (λ(x). .s2), while

do
x ← s1
s2

is syntactic sugar for bind(s1) (λ(x). s2). Moreover, we allow combining these notations. The stepm

function uses a number of helper functions, defined in Figure 4c. A further comment on notation -

in order to check if a partial may, say ρ, is defined for a certain key, say x , we use the notational

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:7

◦

Time

tick : Exp− ×
◦

Time →
◦

Time

◦

Val

int-I : Z→
◦

Val

if0-E :

◦

Val → P (Bool)

clo-I :
◦

Clo →
◦

Val

clo-E :

◦

Val → P (
◦

Clo)

⟦⊕⟧mδ :

◦

Val ×
◦

Val →
◦

Val

◦

Addr := Var ×
◦

Time
◦

Env := Var ⇀
◦

Addr
◦

Clo ::= ⟨λ(x).e, ρ⟩
◦

Store :=
◦

Addr ⇀
◦

Val
◦

KFrame := Frame ×
◦

Env
◦

KAddr :=
◦

Time
◦

KStore :=
◦

KAddr ⇀ P (
◦

KFrame ×
◦

KAddr)

◦

Σ

init-States : Exp− →
◦

Σ

◦
m
return : ∀A.A→

◦
m(A)

bind : ∀A,B.
◦
m(A) → (A→

◦
m(B)) →

◦
m(B)

get-Env : ◦
m(Env)

put-Env :
◦

Env →
◦
m(1)

get-Store : ◦
m(

◦

Store)

put-Store :
◦

Store →
◦
m(1)

get-KAddr : ◦
m(

◦

KAddr)

put-KAddr :
◦

KAddr →
◦
m(1)

get-KStore : ◦
m(

◦

KStore)

put-KStore :
◦

KStore →
◦
m(1)

get-Time : ◦
m(

◦

Time)

put-Time :
◦

Time →
◦
m(1)

mzero : ∀A.
◦
m(A)

·⟨+⟩· : ∀A.
◦
m(A) ×

◦
m(A) →

◦
m(A)

α
◦
Σ↔

◦m
: (
◦

Σ→
◦

Σ) → (Exp− →
◦
m(Exp−))

γ
◦
Σ↔

◦m
: (Exp− →

◦
m(Exp−)) → (

◦

Σ→
◦

Σ)

(a) Type definitions

Fig. 4. λS monadic interpreter

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:8 Ravi Mangal

stepm : Exp− →
◦
m(Exp−)

stepm (e) := do
ρ ← get-Env
e ′′ ← case e of

e1 ⊙ e2 → tickm (e); push(⟨□ ⊙ e2, ρ⟩); return(e1)
if0(e1){e2}{e3} → do

tickm (e); push(⟨if0(□){e2}{e3}, ρ⟩); return(e1)
a → do
v ← ⟦a⟧mA ; f r ← pop
case f r of
⟨□ ⊙ e ′, ρ ′⟩ → do
tickm (e); put-Env(ρ ′); push(⟨v ⊙ □, ρ⟩); return(e ′)

⟨v ′@□, ρ ′⟩ → do
tickm (e); t ← get-Time; s ← get-Store
⟨λ(x).e ′, ρ ′′⟩ ← ↑p (clo-E(v ′))
put-Env(ρ ′′[x 7→ ⟨x , t⟩])
put-Store(s ⊔ [⟨x , t⟩ 7→ v]); return(e ′)

⟨v ′ ⊕ □, ρ ′⟩ → tickm (e); return(⟦⊕⟧mδ (⟨v
′,v⟩))

⟨if0(□){e1}{e2}, ρ ′⟩ → do
tickm (e); put-Env(ρ ′);b ← ↑p (if0-E(v)); refine(⟨a,b⟩)
if (b) then return(e1) else return(e2)

⊥ → return(e)
return(e ′′)

(b) Step function

⟦·⟧mA : Atom →
◦
m(

◦

Val)
⟦i⟧mA := return(int-I(i))
⟦x⟧mA := do
ρ ← get-Env; s ← get-Store
if (x ∈ ρ) then return(s (ρ (x))) else return(⊥)
⟦λ(x).e⟧

mA
:= ρ ← get-Env; return(clo-I(⟨λ(x).e, ρ⟩))

push :

◦

KFrame →
◦
m(1)

push(f r) := do
ka ← get-KAddr;ks ← get-KStore;ka′ ← get-Time
put-KStore(ks ⊔ [ka′ 7→ ⟨f r ,ka⟩]); put-KAddr(ka′)

pop :
◦
m(

◦

KFrame)
pop := do
ka ← get-KAddr;ks ← get-KStore;
if (ka < ks) then return(⊥)
else ⟨f r ,ka′⟩ ← ↑p (ks (ka)); put-KAddr(ka′); return(f r)

↑p : ∀A.P (A) →
◦
m(A)

↑p ({a1, ...,an }) := return(a1)⟨+⟩...⟨+⟩return(an)

refine : Atom × Bool → ◦
m(1)

refine(⟨i,b⟩) := return(1)
refine(⟨x ,b⟩) := do
ρ ← get-Env; s ← get-Store
if (b) then put-Store(s[ρ (x) 7→ int-I(0)]) else return(1)

tickm : Exp− →
◦
m(1)

tickm (e) := do
t ← get-Time
put-Time(tick(⟨e, t⟩))

(c) Helper functions

⟦·⟧m : Exp− →
◦

Σ

⟦e⟧m := lfp λ(x). x ⊔ init-States(e) ⊔ (γ
◦
Σ↔

◦m (stepm)) (x)

(d) Collecting semantics

Fig. 4. λS monadic interpreter

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:9

shortcut x ∈ ρ. The structure of the stepm function closely resembles the abstract machine transition

relation defined in Figure 2c. The helper function ↑p helps hide the non-determinism behind the

monadic interface. While the concrete interpreter for λS does not exhibit any non-determinism, we

will soon see that the abstract interpreter is non-deterministic. Similarly, the function refine helps
the abstract interpreter compute more precise results, particularly in cases where the branch taken

by the conditional cannot be resolved.

Finally, Figure 4d defines the collecting semantics of a λS program in Exp− using the monadic

stepm function. Note that the type signature of stepm (Exp− →
◦

Exp−) is incompatible with least-

fixed point computation needed for computing the meaning of a program. As in [Darais et al. 2015],

this problem is solved by defining a function γ
◦
Σ↔

◦m
that maps the monadic stepm function, to a

transition function of type

◦

Σ →
◦

Σ, that can be iteratively invoked to compute the required least

fixed point. The function α
◦
Σ↔

◦m
does the opposite, with α

◦
Σ↔

◦m
and γ

◦
Σ↔

◦m
representing a Galois

connection between Exp− →
◦
m(Exp−) and

◦

Σ→
◦

Σ.

3.1 Concrete Monadic Interpreter
The monadic concrete interpreter for λS is derived by instantiating the typeclasses defined in

Figure 4. These typeclass instantiations are described in Figure 5. We make sure that the monadic

interpreter is instantiated such that the resulting “concrete” monadic collecting semantics (notated

by ⟦·⟧m) is equivalent to the collecting semantics (⟦·⟧Cl) defined in Figure 3. Notationally, concrete

typeclass instantiations are indicated by a horizontal line over the typeclass names (for instance,

Time).

Note that Time,Val ,Clo,Addr ,Env, Store, and KAddr reuse the corresponding definitions from

Figure 2a for the standard abstract machine semantics of λS . However, KStore , i.e., the continuation
store, is defined such that every address is mapped to a set of continuations. However, these sets

are always singleton in the concrete semantics. The meanings of programs are elements of set Σ,
defined as the powerset of the set of abstract machine states. The lattice operations for Σ, defined

in Figure 5b, are straightforward. In the collecting semantics, we reuse the definition of init-States
from Figure 3 (ignoring the difference in the definitions of KStore and KStore since it does not

have any discernible effect on the definition of init-States).
The correctness of the monadic concrete collecting semantics with respect to the standard

collecting semantics of λS is formally stated by the following proposition.

Proposition 1. (Equivalence of ⟦·⟧Cl and ⟦·⟧m)
∀e ∈ Exp−. ⟦e⟧Cl = ⟦e⟧m

A proof of this equivalence can be found in prior works ([Darais et al. 2015]), and since our

definitions of the standard collecting semantics and the monadic semantics presented here closely

follows that of Darais et al., we do not present the proof here.

3.2 Abstract Monadic Interpreter
The flexibility and modularity afforded by the monadic design of the λS interpreter can be appre-

ciated as one sets out to design an abstract interpreter for the language. We present a monadic

abstract interpreter for λS that is capable of performing interval analysis of λS programs. As with

the monadic concrete interpreter, we only need to instantiate the typeclasses in order to yield the

abstract interpreter. We notate typeclass instances for the abstract interpreter with a hat over the

typeclass name (for instance, ETime).

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:10 Ravi Mangal

t ∈ Time := Time
tick(⟨e, t⟩) := e :: t

v ∈ Val := Val
int-I(i) := i
if0-E(v) := if (v = 0) then true else false
clo-I(c) := c
clo-E(v) := v
⟦+⟧mδ (⟨v,v

′⟩) := v +v ′

⟦−⟧mδ (⟨v,v
′⟩) := v −v ′

a ∈ Addr := Addr

ρ ∈ Env := Env

s ∈ Store := Store

k f ∈ KFrame := KFrame

ka ∈ KAddr := KAddr

ks ∈ KStore := KAddr ⇀ P (KFrame × KAddr)

c ∈ Clo := Clo

ψ ∈ Ψ := Env × Store × KAddr × KStore ×Time

σ ∈ Σ = P (Exp− × Ψ)

αΣ↔m
: (Σ→ Σ) → (Exp− →m(Exp−))

αΣ↔m (f) (e) (ψ) := f ({⟨e,ψ ⟩})

γ Σ↔m
: (Exp− →m(Exp−)) → (Σ→ Σ)

γ Σ↔m (f) (σ) :=
⋃
⟨e,ψ ⟩∈σ f (e) (ψ)

(a) Type definitions

⊑: Σ × Σ→ Bool

σ ⊑ σ ′ := if (σ ⊆ σ ′) then true else false

⊔ : Σ × Σ→ Σ

σ ⊔ σ ′ := σ ∪ σ ′

⊥ : Σ := ∅

⊤ : Σ := Exp− × Ψ

(b) Lattice operations for Σ

Fig. 5. λS monadic concrete interpreter

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:11

m(A) := Ψ → P (A × Ψ)

return(x) (ψ) := {⟨x ,ψ ⟩}

bind(X) (f) (ψ) :=
⋃
⟨x,ψ ′⟩∈X (ψ) f (x) (ψ

′)

get-Env(⟨ρ, s,ka,ks, t⟩) := {⟨ρ, ⟨ρ, s,ka,ks, t⟩⟩}

put-Env(ρ ′) (⟨ρ, s,ka,ks, t⟩) := {(⟨1, ⟨ρ ′, s,ka,ks, t⟩⟩}

get-Store(⟨ρ, s,ka,ks, t⟩) := {⟨s, ⟨ρ, s,ka,ks, t⟩⟩}

put-Store(s ′) (⟨ρ, s,ka,ks, t⟩) := {⟨1, ⟨ρ, s ′,ka,ks, t⟩⟩}

get-KAddr(⟨ρ, s,ka,ks, t⟩) := {⟨ka, ⟨ρ, s,ka,ks, t⟩⟩}

put-KAddr(ka′) (⟨ρ, s,ka,ks, t⟩) := {⟨1, ⟨ρ, s,ka′,ks, t⟩⟩}

get-KStore(⟨ρ, s,ka,ks, t⟩) := {⟨ks, ⟨ρ, s,ka,ks, t⟩⟩}

put-KStore(ks ′) (⟨ρ, s,ka,ks, t⟩) := {⟨1, ⟨ρ, s,ka,ks ′, t⟩⟩}

get-Time(⟨ρ, s,ka,ks, t⟩) := {⟨t , ⟨ρ, s,ka,ks, t⟩⟩}

put-Time(t ′) (⟨ρ, s,ka,ks, t⟩) := {⟨1, ⟨ρ ′, s,ka,ks, t ′⟩⟩}

mzero(ψ) := {}

(X1⟨+⟩X2) (ψ) := X1 (ψ) ⊔ X2 (ψ)

(c) Monad definition

⟦·⟧m : Exp− → Σ

⟦e⟧m := lfp λ(x). x ⊔ init-States(e)
⊔ (γ Σ↔m (stepm)) (x)

(d) Collecting semantics

Fig. 5. λS monadic concrete interpreter

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:12 Ravi Mangal

t ∈ ETime := Exp∗k

tick(⟨e, t⟩) := ⌊e :: t⌋k

Z∞ := Z ∪ {−∞,∞}

v ∈ V̂ al := P (Ĉlo) × ((Z∞ × Z∞) ∪ {⊥})
int-I(i) := {(i, i)}
if0-E(v) := {true | v .2 , ⊥ ∧ (v .2).1 ≤ 0 ≤ (v .2).2}

∪{false | v .2 = ⊥ ∨ (v .2).1 , 0 ∨ (v .2).2 , 0)}
clo-I(c) := {c}
clo-E(v) := {c | c ∈ v .1}
⟦̂+⟧mδ (⟨v,v

′⟩) := ⟨v .1 ∪v ′.1, ⟨v .2.1 +v ′.2.1,v .2.2 +v ′.2.2⟩⟩

⟦̂−⟧mδ (⟨v,v
′⟩) := ⟨v .1 ∪v ′.1, ⟨v .2.1 −v ′.2.2,v .2.2 −v ′.2.1⟩⟩

a ∈ EAddr := Var ×ETime

ρ ∈ Ênv := Var ⇀EAddr
s ∈ EStore :=EAddr ⇀ V̂ al

k f ∈ GKFrame := Frame × Ênv

ka ∈ FKAddr :=ETime

ks ∈ FKStore := FKAddr ⇀ P (GKFrame × FKAddr)
c ∈ Ĉlo ::= ⟨λ(x).e, ρ⟩

ψ ∈ Ψ̂ := Ênv ×EStore × FKAddr × FKStore ×ETime

σ ∈ Σ̂ := P (Exp− × Ψ̂)
Ginit-States(e) := α (init-States(e))

α Σ̂↔m̂
: (Σ̂→ Σ̂) → (Exp− → m̂(Exp−))

α Σ̂↔m̂ (f) (e) (ψ) := f ({⟨e,ψ ⟩})

γ Σ̂↔m̂
: (Exp− → m̂(Exp−)) → (Σ̂→ Σ̂)

γ Σ̂↔m̂ (f) (σ̂) :=
⋃
⟨e,ψ ⟩∈σ̂ f (e) (ψ)

(a) Type definitions

⊑: Σ̂ × Σ̂→ Bool

σ̂ ⊑ σ̂ ′ :=

if (∀σ ∈ σ̂ .∃σ ′ ∈ σ̂ ′. σ ⊑̃ σ ′) then true else false

⊑̃ : (Exp− × Ψ̂) × (Exp− × Ψ̂) → Bool
⟨e, ρ, s,ka,ks, t⟩ ⊑̃ ⟨e ′, ρ ′, s ′,ka′,ks ′, t ′⟩ :=

if *.
,

e = e ′ ∧ ka = ka′ ∧ t = t ′ ∧ ρ = ρ ′

∧ (∀a ∈ s .s (a) ⊑ s ′(a))
∧ (∀ka ∈ ks .ks (ka) ⊆ ks ′(ka))

+/
-

then true else false

⊔ : Σ̂ × Σ̂→ Σ̂

σ̂ ⊔ σ̂ ′ := σ̂ ∪ σ̂ ′

⊥ : Σ̂ := ∅

⊤ : Σ̂ := ⊤

(b) Lattice operations for Σ̂

Fig. 6. λS monadic abstract interpreter for interval analysis

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:13

m̂(A) := Ψ̂ → P (A × Ψ̂)

return(x) (ψ) := {⟨x ,ψ ⟩}

bind(X) (f) (ψ) :=
⋃
⟨x,ψ ′⟩∈X (ψ) f (x) (ψ

′)

get-Env(⟨ρ, s,ka,ks, t⟩) := {⟨ρ, ⟨ρ, s,ka,ks, t⟩⟩}

put-Env(ρ ′) (⟨ρ, s,ka,ks, t⟩) := {⟨1, ⟨ρ ′, s,ka,ks, t⟩⟩}

get-Store(⟨ρ, s,ka,ks, t⟩) := {⟨s, ⟨ρ, s,ka,ks, t⟩⟩}

put-Store(s ′) (⟨ρ, s,ka,ks, t⟩) := {⟨1, ⟨ρ, s ′,ka,ks, t⟩⟩}

get-KAddr(⟨ρ, s,ka,ks, t⟩) := {⟨ka, ⟨ρ, s,ka,ks, t⟩⟩}

put-KAddr(ka′) (⟨ρ, s,ka,ks, t⟩) := {⟨1, ⟨ρ, s,ka′,ks, t⟩⟩}

get-KStore(⟨ρ, s,ka,ks, t⟩) := {⟨ks, ⟨ρ, s,ka,ks, t⟩⟩}

put-KStore(ks ′) (⟨ρ, s,ka,ks, t⟩) := {⟨1, ⟨ρ, s,ka,ks ′, t⟩⟩}

get-Time(⟨ρ, s,ka,ks, t⟩) := {⟨t , ⟨ρ, s,ka,ks, t⟩⟩}

put-Time(t ′) (⟨ρ, s,ka,ks, t⟩) := {⟨1, ⟨ρ ′, s,ka,ks, t ′⟩⟩}

mzero(ψ) := {}

(X1⟨+⟩X2) (ψ) := X1 (ψ) ⊔ X2 (ψ)

(c) Monad definition

α : Σ→ Σ̂
α (σ) := {α (σ) | σ ∈ σ }

α : Exp− × Ψ → Exp− × Ψ̂
α (⟨e, ρ, s,ka,ks, t⟩) := ⟨e,α (ρ),α (s),α (ka),α (ks),α (t)⟩

α : Env → Ênv
α (ρ) := {⟨x , ⟨x ,

⌊
ρ (x).2

⌋
k ⟩⟩ | x ∈ ρ}

α : Store → EStore
α (s) := λ(â).

⊔
α (a)=â∧a∈s α (s (a))

α : KAddr → FKAddr
α (ka) := ⌊ka⌋k

α : KStore → FKStore
α (ks) := λ(k̂a).

⋃
α (ka)=k̂a∧ka∈ks α (ks (ka))

α : Time → ETime
α (t) := ⌊t⌋k

(d) Abstraction map α from Σ to Σ̂

⟦̂·⟧m : Exp− → Σ̂

⟦̂e⟧m := lfp λ(x). x ⊔ Ginit-States(e)
⊔ (γ Σ̂↔m̂ (Estepm)) (x)

(e) Abstract semantics

Fig. 6. λS monadic abstract interpreter for interval analysis
Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:14 Ravi Mangal

Figure 6a includes all the typeclass definitions, except the monad definition. For Van Horn-Might

abstract machines, the notion of time plays a key role in dictating the abstract machine behavior.

In particular, the set of addresses available in the value and continuation stores depends on the

definition of time. For the abstract interpreter, we want to finitize the set of available addresses, and

this is achieved by restricting ETime to sequences of upto k expressions (with the set of syntactic

expressions contained in a program being finite), as opposed to sequences of unbounded length for

concrete interpreters. Values (V̂ al) are defined as a pair of a set of closures and an integer interval.

Note that we extend the set of integers Z to Z∞ that includes {−in f ty, in f ty}. The top element

of the set of intervals is defined as ⟨−∞,∞⟩ while bottom is defined by a special element ⊥. The

reason for defining values as pairs of closures and intervals is that, due to the finite number of

addresses available in the store, it is possible for a particular location to be mapped to values of both

these types. The operations defined for V̂ al are self-explanatory though we make a quick comment

on notation - the projection of the ith element of a tuple t is written as t .i , with indices starting

from 1. All the other definitions in Figure 6a are straightforward. Note that the abstract version of

init-States (Ginit-States) applies the abstraction map α , defined in Figure 6d to set of initial states

constructed by init-States. In the abstract setting, this set of initial states only contains a single

element, irrespective of whether the expression is closed, or if it has free variables of type Z.

Figure 6b defines the lattice operations for Σ̂. An element σ̂ of Σ̂ is itself a set of abstract states.

The lattice order operation (⊑) is defined such that σ̂ is “less than” σ̂ ′ if for every element σ ∈ σ̂ ,

there exists at least one element σ ′ ∈ σ̂ ′ such that σ ⊑̃ σ ′. ⊑̃ is itself defined such that σ is “less than”

σ ′ if and only if σ and σ ′ the expression, the environment, the address of the next continuation,

and the time components are the same, and for every address in σ ’s store s that is mapped to a

value v , the same address in store s ′ in σ ′ is mapped to a value v ′ that is at least as large as v , and
similarly, for every address in σ ’s continuation store ks that is mapped to a set X of continuations,

the same address in store ks ′ in σ ′ is mapped to a set X ′ that is equal to X or a superset of X . A
comment on the notation - we do not use distinct symbols to represent the lattice operations for

different lattices, but the lattice being considered should be clear from the context. The bottom of Σ̂
lattice is just the empty set while the top is defined by the special element ⊤.

Figure 6c defines the monad for the abstract interpreter and figure 6d defines the abstraction

map from Σ to Σ̂. The abstract version of an element σ ∈ Σ is obtained by abstracting each element

σ ∈ σ . In the same way that we do not notationally distinguish between lattice operations for

different lattices, we do not notationally distinguish between the different abstraction operations,

but the types involved should be clear from the context. As one would expect, abstracting a concrete

abstractmachine state involves abstracting every element of the state tuple. Environment abstraction

requires abstracting the addresses that variables are mapped to. These addresses are pairs of variable

names and times, and an abstract version of time t requires truncating the sequence of expressions

to the latest k expressions. A value store is abstracted by first abstracting the addresses in the store,

and then joining all the values that map to the same address. Similarly, continuation stores are

abstracted by abstracting the addresses, and then taking a union of all the sets of continuations that

map to the same address. Finally, the abstract semantics of a program in λS are defined as the least

fixed point of a function that uses the abstract versions of the init-States and the stepm functions,

i.e., Ginit-States and Estepm.
We next state two propositions relating the λS monadic abstract interpreter to the monadic

concrete interpreter. As is typical in the theory of abstract interpretation, we would like to state

that the abstract interpreter is sound with respect to the concrete interpreter.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:15

Proposition 2. (Soundness of Estepm with respect to stepm)
∀σ ∈ Σ. α ((γ Σ↔m (stepm)) (σ)) ⊑ (γ Σ̂↔m̂ (Estepm)) (α (σ))

Proposition 2 relates the concrete stepm function to the abstract Estepm function. In particular,

for every element σ ∈ Σ, we want the abstraction of the result of applying stepm to σ to be “less

than” the result of applying Estepm to α (σ). This proposition does not directly relate the concrete

and abstract semantics of λS (which involve computing least fixed points), but it can help us prove

the soundness of ⟦̂·⟧m with respect to ⟦·⟧m . We can prove this result by performing a case analysis

on the structure of λS expressions, where the cases are the same as that considered by stepm. We

do not present the proof here.

Proposition 3 states the soundness relationship between the abstract and the concrete semantics.

In particular, for every λS program e ∈ Exp−, it states that the result of abstracting the meaning of

the program, as defined by the concrete semantics ⟦e⟧m , is less than the meaning defined by the

abstract semantics ⟦̂e⟧m . In other words, the program semantic invariant computed using ⟦̂·⟧m can

be safely used in proofs of program correctness.

Proposition 3. (Soundness of ⟦̂·⟧m with respect to ⟦·⟧m)
∀e ∈ Exp−. α (⟦e⟧m) ⊑ ⟦̂e⟧m

Proof. We only present an informal proof sketch. From a proof of proposition 2, a proof of this

proposition can be constructed in standard manner using the fixed point transfer theorem from

[Cousot and Cousot 1979]. In particular, the monotonicity of the functions λ(x). x ⊔ Ginit-States(e)⊔
(γ Σ̂↔m̂ (Estepm)) (x) and λ(x). x ⊔ init-States(e) ⊔ (γ Σ↔m (stepm)) (x), combined with proposition 2

and the Knaster–Tarski theorem fixed point theorem yields the required result.

■

4 OBSERVATIONAL ABSTRACT INTERPRETERS
In the previous sections, we have defined the language λS (λSA), and have discussed the construction
of a monadically-structured interpreter for λS . This monadic interpreter is parameterized, i.e., the

types of data accessed by the interpreter are defined using typeclass-like constructions. By suitably

instantiating these typeclasses, one can recover the concrete semantics of the language. Additionally,

one can also instantiate these typeclasses to yield an abstract interpreter (in our case, an abstract

interpreter capable of interval analysis). From the perspective of proofs about program judgments,

themonadic interpreter is a meta-theoretic construction for computing semantic program invariants.

The abstract semantics or abstract meaning of a program, computed with a monadic abstract

interpreter, is a semantic invariant of the program and a simplified representation (informally,

containing lesser information) of the concrete program meaning.

We want to combine semantic invariant based reasoning, with reasoning hypothetically about

program via run time/dynamic checks. Moreover, we want to use observations about program

behavior for inferring the hypotheses. We achieve this by extending the monadic interpreter design,

proposing a new meta-theoretic construction for reasoning about programs, that we refer to as

observational abstract interpreters. There are two main reasons motivating our construction of

observational abstract interpreters: (i) past work has investigated various combinations of invariant-

based reasoning, hypothetical reasoning, and observational reasoning about programs, but there

has been an absence of formal investigation of approaches combining these three reasoning styles.

A precise formulation of a combined approach can bring greater clarity about the design space of

algorithms for finding proofs of program judgments. (ii) hypothetical reasoning about programs

using observations about their behavior can help us focus the program proof effort towards the

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:16 Ravi Mangal

◦

Obs

◦
mo

return : ∀A.A→
◦
mo (A)

bind : ∀A,B.
◦
mo (A) → (A→

◦
mo (B)) →

◦
mo (B)

get-Env : ◦
mo (Env)

put-Env : Env → ◦
mo (1)

get-Store : ◦
mo (

◦

Store)

put-Store :
◦

Store →
◦
mo (1)

get-KAddr : ◦
mo (

◦

KAddr)

put-KAddr :
◦

KAddr →
◦
mo (1)

get-KStore : ◦
mo (

◦

KStore)

put-KStore :
◦

KStore →
◦
mo (1)

get-Time : ◦
mo (

◦

Time)

put-Time :
◦

Time →
◦
mo (1)

mzero : ∀A.
◦
mo (A)

·⟨+⟩· : ∀A.
◦
mo (A) ×

◦
mo (A) →

◦
mo (A)

obs-Store : Exp− ×Var ×
◦

Val ×
◦

Obs →
◦
mo (

◦

Val)

α
◦
Σ↔

◦mo
: (

◦

Obs → (
◦

Σ→
◦

Σ)) → (
◦

Obs → (Exp− →
◦
m(Exp−)))

γ
◦
Σ↔

◦mo
: (

◦

Obs → (Exp− →
◦
m(Exp−))) → (

◦

Obs → (
◦

Σ→
◦

Σ))

(a) Type definitions
stepm

O
: Exp− ×Obs →

◦
mo (Exp

−)
stepm

O
(e) := do

ρ ← get-Env
e ′′ ← case e of

e1 ⊙ e2 → tickm (e); push(⟨□ ⊙ e2, ρ⟩); return(e1)
if0(e1){e2}{e3} → do

tickm (e); push(⟨if0(□){e2}{e3}, ρ⟩); return(e1)
a → do
v ← ⟦a⟧mA ; f r ← pop
case f r of
⟨□ ⊙ e ′, ρ ′⟩ → do
tickm (e); put-Env(ρ ′); push(⟨v ⊙ □, ρ⟩); return(e ′)

⟨v ′@□, ρ ′⟩ → do
tickm (e); t ← get-Time; s ← get-Store
⟨λ(x).e ′, ρ ′′⟩ ← ↑p (clo-E(v ′))
put-Env(ρ ′′[x 7→ ⟨x , t⟩])
v ′ ← obs-Store(⟨e ′,x ,v,o⟩)
put-Store(s ⊔ [⟨x , t⟩ 7→ v ′]); return(e ′)

⟨v ′ ⊕ □, ρ ′⟩ → tickm (e); return(⟦⊕⟧mδ (⟨v
′,v⟩))

⟨if0(□){e1}{e2}, ρ ′⟩ → do
tickm (e); put-Env(ρ ′);b ← ↑p (if0-E(v)); refine(⟨a,b⟩)
if (b) then return(e1) else return(e2)

⊥ → return(e)
return(e ′′)

(b) Step function

⟦·⟧mO : Exp− ×Obs →
◦

Σo

⟦e⟧mO (o) := lfp λ(x). x ⊔ init-States(e) ⊔ (γ
◦
Σ↔

◦mo (stepm
O
)) (x) (o)

(c) Collecting semantics

Fig. 7. λS observational interpreter

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:17

observed or common program behaviors, potentially making the the search for program proofs

cheaper, at the cost of dynamic/run time checks.

In Figure 7, we present an observational abstract interpreter for λS . This interpreter is monadically

structured, and designed such that while the semantic invariant, i.e., the program semantics, is

being computed, the interpreter can read data representing observations about program behavior,

use these observations to make hypotheses about program behavior, and accordingly update the

state of the interpreter. Moreover, the validity of these hypotheses statically, and instead, we embed

dynamic checks in to the λS programs, producing λSA programs. In the process of designing an

observational abstract interpreters, following are the main questions that we were forced to address,

• What is the form of the observational data about programs?What aspects of program behavior

does it capture?

• How do we infer the hypotheses using the observational data? Moreover, how do we avoid

inferring too many hypotheses/dynamic checks, and how do we ensure that the inferred

hypotheses are not overly restrictive, such that the program fails to satisfy the dynamic

checks in most cases?

• How do we translate the hypotheses in to dynamic checks embedded in the program?

For the first question, the observational abstract interpreter design in Figure 7 assumes that the

observational data is drawn from the collecting semantics, i.e., the set of reachable abstract machine

states, of a λS program. However, the exact form of the observations is left unspecified (we give a

specific definition for the observational interval analysis defined in Figure 8). Using observations

about program inputs in order to infer program pre-conditions is not uncommon [Padhi et al. 2016],

but our design allows observations at any program point, and about any component of the abstract

machine. In Figure 7, the typeclass

◦

Obs , with no constraints, represent the types of observations.

We use the blue background to highlight parts of the observational interpreter design that are

unique. We do not show any type definitions besides the monad typeclasses and elide the helper

functions because these are similarly to the definitions in Figure 4.

To address the second question, we extend the monad typeclass with the operation obs-Store as
shown in Figure 7a. This operation requires that a 4-tuple comprising of the current expression

being evaluated, a variable name, the value associated with the variable, and the observational data

is passed as an argument. We also modify stepm such that whenever the term in the argument

position of a function application is evaluated to a value and the next step of the evaluation is to

actually apply the function to this value, the observational interpreter first invokes the obs-Store
operation with the name of the argument (say x) and it’s evaluated value (say v). Next, instead of

substituting x with v in the function, we substitute it with the value (say v ′) returned by obs-Store
(say v ′). The hypothesis that the value of x is v ′ instead of v is the only form of hypothesis that the

observational interpreter is allowed to make. The mechanism for computing v ′ is hidden behind

the monadic interface. Notice that the observational data is passed as an argument to the stepm
O

function. This is also forces us to change the type definitions of α
◦
Σ↔

◦mo
and γ

◦
Σ↔

◦mo
(Figure 7a) that

map between the monadic step function and transition function of type

◦

Σ →
◦

Σ. Moreover, the

observational collecting semantics (⟦·⟧mO) are also modified to accept observations as an argument.

We address the third question in the specific context of an observational abstract interpreter for

an interval analysis of λS programs in the next section.

4.1 Observational Interval Analysis for λS
We instantiate the generic observational interpreter for λS so as to yield an observational abstract

interpreter for interval analysis of λS programs as described in Figure 8. The type definitions are

presented in Figure 8a. Notice that observations (Obs) are defined as a partial map from labels to

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:18 Ravi Mangal

o ∈ Obs := Lbl ⇀ (Var ⇀ P (Z))

h ∈ Hyp := Lbl ⇀ (Var ⇀ V̂ al)

ψ ∈ Ψ̂ := Ênv ×EStore × FKAddr × FKStore ×ETime

σ̂o ∈ Σ̂o := P (Exp− × Ψ̂) × Hyp
Ginit-Stateso (e) := ⟨α (init-States(e)),⊥⟩

α Σ̂↔m̂o
: (Obs → (Σ̂o → Σ̂o)) → (Obs → (Exp− → m̂o (Exp

−)))

α Σ̂↔m̂o (f) (o) (e) (⟨ψ ,h⟩) := f (o) (⟨{⟨e,ψ ⟩},h⟩)

γ Σ̂↔m̂o
: (Obs → (Exp− → m̂o (Exp

−))) → (Obs → (Σ̂o → Σ̂o))

γ Σ̂↔m̂o (f) (o) (σ̂o) := let ⟨X ,h⟩ := σ̂o in
⟨
⋃
⟨e,ψ ⟩∈X f (o) (e) (⟨ψ ,h⟩).1,

⊔
⟨e,ψ ⟩∈X f (o) (e) (⟨ψ ,h⟩).2⟩

(a) Type definitions

⊑: Σ̂o × Σ̂o → Bool

σ̂o ⊑ σ̂ ′o :=

if ((∀σ ∈ σ̂o .1.∃σ ′ ∈ σ̂ ′o .1. σ ⊑̃o σ ′) ∧ (σ̂o .2 ⊑ σ̂ ′o .2))
then true else false

⊑̃o : (Exp− × Ψ̂) × (Exp− × Ψ̂) → Bool
⊑̃o := ⊏̃

⊑: Hyp × Hyp → Bool
h ⊑ h′ := if (∀l ∈ h.∀x ∈ h(l).h(l) (x) ⊒ h′(l) (x))

then true else false

⊔ : Σ̂o × Σ̂o → Σ̂o
σ̂o ⊔ σ̂ ′o := ⟨σ̂o .1 ∪ σ̂ ′o .1, σ̂o .2 ⊔ σ̂ ′o .2⟩

⊔ : Hyp × Hyp → Hyp
h ⊔ h′ :=
let f := (λ(x). if (x ∈ h(l) ∧ x ∈ h′(l))

then if (h(l) (x) = h′(l) (x)) then h(l) (x) else ⊥
else if (x ∈ h(l)) then h(l) (x) else h′(l) (x)) in

let д = (λ(x). if (l ∈ h ∧ x ∈ h(l))
then h(l) (x) else if (l ∈ h′ ∧ x ∈ h′(l)) then h′(l) (x)) in

{ f | l ∈ h ∧ l ∈ h′} ∪ {д | l ∈ h xor l ∈ h′}

⊥ : Σ̂o := ⟨∅,⊥⟩

⊤ : Σ̂o := ⟨⊤,⊤⟩

(b) Lattice operations for Σ̂o

Fig. 8. λS observational abstract interpreter for interval analysis

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:19

m̂o (A) := Ψ̂ × Hyp → P (A × Ψ̂) × Hyp

obs-Store : Exp− ×Var × V̂ al → m̂o (V̂ al)
obs-Store(⟨e,x ,v,o⟩) (⟨ψ ,h⟩) :=
if (get-Label(e) ∈ h ∧ x ∈ h(get-Label(e))) then {
⟨{⟨⟨v .1,h(get-Label(e)) (x)⟩,ψ ⟩},h⟩

} else if ((get-Label(e) ∈ o) ∧ (x ∈ o(get-Label(e)))) then {
let vO := α (o(get-Label(e)) (x)) in
let distance := d (v .2,vO) in
if (distance ≥ ω ∧vO ⊑ v .2) then {
⟨{⟨⟨v .1,vO ⟩,ψ ⟩},h ⊔ [get-Label(e) 7→ [x 7→ ⟨∅,vO ⟩]]⟩

} else ⟨{⟨v,ψ ⟩},h⟩
} else ⟨{⟨v,ψ ⟩},h⟩

return(x) (⟨ψ ,h⟩) := ⟨{⟨x ,ψ ⟩},h⟩

bind(X) (f) (⟨ψ ,h⟩) := let ⟨Y ,h′⟩ := X (⟨ψ ,h⟩) in⋃
⟨x,ψ ′⟩∈Y f (x) (⟨ψ ′,h′⟩)

get-Env(⟨⟨ρ, s,ka,ks, t⟩,h⟩) := ⟨{⟨ρ, ⟨ρ, s,ka,ks, t⟩⟩},h⟩

put-Env(ρ ′) (⟨⟨ρ, s,ka,ks, t⟩,h⟩) := ⟨{⟨1, ⟨ρ ′, s,ka,ks, t⟩⟩},h⟩

get-Store(⟨⟨ρ, s,ka,ks, t⟩,h⟩) := ⟨{⟨s, ⟨ρ, s,ka,ks, t⟩⟩},h⟩

put-Store(s ′) (⟨⟨ρ, s,ka,ks, t⟩,h⟩) := ⟨{⟨1, ⟨ρ, s ′,ka,ks, t⟩⟩},h⟩

get-KAddr(⟨⟨ρ, s,ka,ks, t⟩,h⟩) := ⟨{⟨ka, ⟨ρ, s,ka,ks, t⟩⟩},h⟩

put-KAddr(ka′) (⟨⟨ρ, s,ka,ks, t⟩,h⟩) := ⟨{⟨1, ⟨ρ, s,ka′,ks, t⟩⟩},h⟩

get-KStore(⟨⟨ρ, s,ka,ks, t⟩,h⟩) := ⟨{⟨ks, ⟨ρ, s,ka,ks, t⟩⟩},h⟩

put-KStore(ks ′) (⟨⟨ρ, s,ka,ks, t⟩,h⟩) := ⟨{⟨1, ⟨ρ, s,ka,ks ′, t⟩⟩},h⟩

get-Time(⟨⟨ρ, s,ka,ks, t⟩,h⟩) := ⟨{⟨t , ⟨ρ, s,ka,ks, t⟩⟩},h⟩

put-Time(t ′) (⟨⟨ρ, s,ka,ks, t⟩,h⟩) := ⟨{⟨1, ⟨ρ ′, s,ka,ks, t ′⟩⟩},h⟩

mzero(⟨ψ ,h⟩) := ⟨{},h⟩

(X1⟨+⟩X2) (⟨ψ ,h⟩) := X1 (⟨ψ ,h⟩) ∪ X2 (⟨ψ ,h⟩)

(c) Monad definition

α : Σ→ Σ̂o
α (σ) := ⟨{α (σ) | σ ∈ σ },⊥⟩

(d) Abstraction map α from Σ to Σ̂o

⟦̂·⟧mO : Exp− ×Obs → Σ̂o
⟦̂e⟧mO (o) := lfp λ(x). x ⊔ Ginit-Stateso (e)

⊔ (γ Σ̂↔m̂ (Estepm
O
)) (x) (o)

(e) Abstract semantics

Fig. 8. λS observational abstract interpreter for interval analysis

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:20 Ravi Mangal

i ∈ Intrvl : Z∞ × Z∞

d : Intrvl × Intrvl → R ∪ {−∞,∞}
d (⟨i, i ′⟩) := let X := {−∞,∞} in

if (i .1 ∈ X ∨ i .2 ∈ X ∨ i = ⊥ ∨ i ′.1 ∈ X ∨ i ′.2 ∈ X ∨ i ′ = ⊥)
then ∞
else max (⟨|i .1 − i ′.1|, |i .2 − i ′.2|⟩)

Fig. 9. Metric structure on intervals

embedt : Exp−λS × (Lbl ×Var × V̂ al) → Exp−λSA
embedt (⟨e, ⟨l ,x ,v⟩⟩) := let v ′ := v .2 in

let e ′ := if0(α (x) ⊑ v ′){e}{abort} in
if (get-Label(e) = l) then e ′ else e

Fig. 10. Translation of λS programs in to λSA programs with embedded dynamic checks (assuming that ⊑
returns 1 for true and 0 for false)

partial maps from variables names to sets of values. We assume that program observations are

recorded at the granularity of syntactic program expressions, explicitly identified by their labels.

Moreover, for each expression we can record a set of observed values for any variable in scope.

We also assume that only the values of type Z are recorded. Extending this approach to with

observations of higher-order values is an interesting direction for future work. The observational

abstract interpreter computes an element σ̂o ∈ Σ̂o , where each element σ̂o is a pair of a set of abstract
machine states and the hypotheses map. A hypotheses map h is a partial map from labels to partial

maps from variables names to abstract values. Intuitively, the interpreter can make hypotheses at

the granularity of syntactic program expressions. At each program expressions, hypotheses can

made about the abstract values of the variables in scope. Though the type of hypotheses maps

(Lbl ⇀ Var ⇀ V̂ al) allows assumptions about higher-order values, the observational abstract

interpreter defined here only makes assumptions on Z values. Initially, the hypotheses map is

assumed to be ⊥, as the definition of Ginit-Stateso shows.
Figure 8b defines the lattice operations for the lattice Σ̂o . We draw notice to the definitions of

the lattice operations for the hypotheses map. A hypotheses map h is “less than” a hypotheses map

h′ if for every label and variable for which h includes a hypothesis, h′ has a stricter hypotheses, i.e.,
assumes a narrower interval of Z. The join operation for hypotheses maps h and h′ looks messy

but the intuition is simple - whenever a hypothesis is defined for one map but not the other, we

defer to the map with the definition, but in case both the maps have hypotheses defined for a

particular combination of label and variable, then we require the two hypotheses be equal, or the

join produces the bottom element of the V̂ al lattice as the joined hypothesis. The bottom element

of the Hyp lattice makes no hypotheses whereas the top element of the Hyp lattice makes the

strictest possible possible hypothesis for every label and variable.

Figure 8c defines the monad m̂o for observational abstract interpreters. The only interesting

definition is that of obs-Store. The other monad operations are similar to the definition of the

monad operations for the monadic abstract interpreter in Figure 6e. obs-Store expects a 4-tuple
of expression, variable name, value, and the observations (⟨e,x ,v,o⟩). It extracts the label of the
expression e using the get-Label function, and checks if a hypothesis has been already made for

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:21

variable x at label t , and if so, it replaces the second element of v (recall that an abstract value

is a pair of a set of closures and an interval) with the hypothesis. In case there is no preexisting

hypothesis, and if the observations map includes a set of observed values of x at label t , then the

set of observed Z values is first abstracted to an interval v̂o (assumed here to bee tightest possible

interval abstraction of the set of observed values, though other choices are possible). Next, the

distance between the intervals v̂ and v .2 is computed. Such a distance computation is possible

because we give a metric structure to the set of intervals (defined in Figure 9). Finally, if the distance

is greater than a fixed constant ω (we expect value of ω to be empirically derived), and if v̂o ⊑ v .2,
then we replace v .2 with v̂o , and update the hypotheses map accordingly.

Figure 8d defines the abstraction map α from Σ to Σ̂o . The abstraction map reuses the definition

of the abstraction map from Figure 6d for the set of abstract machines states, but the hypotheses

map is always assumed to be ⊥. Finally, the observational abstract semantics, defined in Figure 8e

take the standard least fixed point form, except that the observations map is expected as an input.

The metric structure on the set of intervals in defined in Figure 9. A set X has a metric structure

for all elements x ,y, z in X , if a function d (·, ·) producing a value of type R is defined for X , such
that the following conditions hold true,

• d (x ,y) = 0 ⇐⇒ x = y
• d (x ,y) = d (y,x)
• d (x , z) ≤ d (x ,y) + d (y, z)

Finally, Figure 10 describes the manner in which a hypothesis can be embedded in a λS program.

For ease of presentation, we define a function embedt that given a program from the set Exp−λS of

λS programs with free variables of type Z, and a triple of a label, variable name, and an abstract

value (⟨l ,x ,v⟩), produces a λSA program where the original expression e is wrapped in a dynamic

check. We assume here that the abstraction map α and the lattice operation ⊑ are computable.

Proposition 4 is a formal statement of the notion of soundness for our observational abstract

interpreter, relating the observational abstract semantics (⟦̂·⟧mO) of a λS program in Exp− with

the monadic concrete semantics (⟦·⟧m) of the same. Intuitively, the proposition states that for any

expression e ∈ Exp− and for any observations map o, if we compute the observational abstract

semantics of e , producing the pair ⟨σ̂ ,h⟩, then the λSA program e ′ obtained by embedding the

hypotheses map h in e is such that an abstraction of the computed collecting semantics of e ′ is less

than or equal to σ̂ extended with an abort abstract machine state. Note that ⟦·⟧m here denotes the

monadic collecting semantics of λSA which is exactly the same as for λS (in Figure 5) except for the

abort operation

Proposition 4. (Soundness of ⟦̂·⟧mO with respect to ⟦·⟧m)
∀e ∈ Exp−,o ∈ Obs . If ⟨σ̂ ,h⟩ := ⟦̂e⟧mO (o), then,α (⟦embed(e,h)⟧

m
) ⊑ (σ̂∪{⟨abort,⊤,⊤,⊤,⊤,⊤⟩})

We do not present a proof of proposition 4 in this paper, though we believe that the observational

abstract interpreter in Figure 8 is sound with respect to the monadic concrete semantics of λS .

The proof is challenging primarily because the function γ Σ̂↔m̂o (stepm
O
) of type Σ̂o → Σ̂o is not

monotonic.

5 RELATEDWORK
There are many threads of work related to the ideas presented in this article, and we described

some of these connections in Section 1. In this section, we further elaborate on three main threads

of related work, namely, on the use of observations about a program for constructing program

proofs, on the use of “big code”, i.e. repositories of existing programs and associated metadata, for

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:22 Ravi Mangal

learning statistical models that can help reason about programs, and finally, on embedding dynamic

checks to aid static reasoning about program.

Using program observations for program proofs. There is a long history of using observa-

tions to make hypotheses about program behavior, and computing semantic invariants under these

hypotheses [Bodden et al. 2011; Csallner et al. 2008; Devecsery et al. 2018; Dufour et al. 2007; Grech

et al. 2017; Gupta et al. 1997; Kinder and Kravchenko 2012; Mock et al. 2002; Wei and Ryder 2013].

Our work on observational abstract interpreters formalizes this style of reasoning. A different line

of work uses program observations to guide CEGAR algorithms in their search for an appropriate

abstract semantics [Beckman et al. 2010; Gupta et al. 2009; Naik et al. 2012]. More recently, with

the advances in statistical learning algorithms, a number of techniques have been proposed that

eschew the use of abstract interpreters and instead use the observational data to iteratively infer (or

learn) candidate invariants that, if confirmed to be invariants (typically using an SMT-like decision

procedure), are used to help in the construction of program proofs [Ernst et al. 2007; Fedyukovich

et al. 2017; Garg et al. 2014, 2016; Le et al. 2019; Miltner et al. 2020; Sharma and Aiken 2016; Sharma

et al. 2013b,a; Si et al. 2018; Zhu et al. 2018, 2015, 2016]. Program observations have also been used

to compute candidate specifications [Ammons et al. 2002; Bastani et al. 2018; Padhi et al. 2016;

Sankaranarayanan et al. 2008] or types of program modules [An et al. 2011; Furr et al. 2009].

“Big code” and program reasoning. Using “big code”, i.e., a dataset of programs and corre-

sponding program metadata (like test cases, bug reports, program analysis results, etc.), one can

construct statistical models about the nature of programs that humans write, and use these models

to help reason about programs. With the rapid advances in computational statistical modeling and

machine learning in recent years, this style of reasoning has become increasingly feasible. We give

a small sampling here of the literature on using statistical models for reasoning about programs.

Statistical models have been used to, (i) help in the computation of program invariants by aiding

CEGAR algorithms in their search for abstract semantics [Grigore and Yang 2016], as well as help

tune abstract interpreter heuristics [Cha et al. 2016; Chae et al. 2017; He et al. 2020; Heo et al. 2016,

2017; Jeong et al. 2017; Oh et al. 2015; Singh et al. 2018], (ii) directly compute candidate program

invariants or specifications [Beckman and Nori 2011; Kremenek et al. 2006; Livshits et al. 2009; Si

et al. 2018], (iii) rank the list of bugs reported by a program analysis tool, in order of the probability

of the bug being a true program bug (as opposed to being a false positive) [Kremenek et al. 2004;

Kremenek and Engler 2003; Raghothaman et al. 2018] and to allow the use of developer provided

feedback in order to update the list of reported bugs [Kremenek et al. 2004; Mangal et al. 2015],

(iv) guide the tactics to be used by proof search algorithms [Alemi et al. 2016; Bansal et al. 2019;

Blaauwbroek et al. 2020; Chen et al. 2019; Kaliszyk et al. 2018; Loos et al. 2017; Sanchez-Stern et al.

2020], (v) infer the likely types or annotations of a program [Allamanis et al. 2020; Bielik et al. 2017;

Hellendoorn et al. 2018; Wei et al. 2019], or predict program behaviors [Allamanis et al. 2018; Alon

et al. 2018; Raychev et al. 2015].

Aiding static reasoning via dynamic checks. The use of dynamic checks as a mechanism

to help with static reasoning about programs has been a topic of intense investigation in recent

years, particularly in the context of gradual typing [Siek and Taha 2006; Tobin-Hochstadt and

Felleisen 2006]. Gradual typing aims to reason about programs written in a mixture of typing

disciplines, and employs dynamic checks, wherever necessary, to translate between the different

typing discplines. However, the idea of dynamic checks as an aid for type-based reasoning [Abadi

et al. 1991; Cartwright and Fagan 1991; Flanagan 2006; Furr et al. 2009; Henglein 1994; Knowles and

Flanagan 2010; Thatte 1989] and for computing more precise invariants [Bastani et al. 2015, 2019;

Devecsery et al. 2018; Stulova et al. 2016] has been repeatedly used over the last thirty years. In the

opposite direction, starting from programs already embedded with dynamic checks or constracts,

static reasoning has been used to remove the dynamic checks, if possible and reduce the run time

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:23

overhead [Choi et al. 2002; Elmas et al. 2007; Myers 1999; Nagarakatte et al. 2010; Necula et al. 2002;

Nguyen et al. 2017, 17ed, 2014; Rhodes et al. 2017; Tobin-Hochstadt and Van Horn 2012].

6 CONCLUSION
We study the proof strategies employed by algorithms that search for proofs of program judgments.

We are particularly interested in three broad strategies, namely, computing semantic program

invariants, reasoning hypothetically about programs by embedding them with dynamic/run time

checks, and using data representing observations about program behavior to help reason about a

program. We present a meta-theoretic construction, referred as observational abstract interpreter,

that combines these three reasoning strategies. An observational abstract interpreter uses program

observations to infer hypotheses about program behavior, and computes hypothetical semantic

invariants of the program. These hypotheses are embedded in the program as dynamic checks.

Our design of observational abstract interpreters is heavily inspired by the abstracting abstract

machines methodology of Van Horn and Might for constructing concrete and abstract interpreters

of higher-order languages, and the monadically refactored design of these interpreters. We formalize

our ideas in the context of a simple higher-order language (λS) with built-in integers. We construct

an observational interpreter for interval analysis of λS programs.

ACKNOWLEDGMENTS
I am grateful to Alessandro Orso, David Devecsery, and David Darais for the discussions that led to

this work.

REFERENCES
Martín Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. 1991. Dynamic Typing in a Statically Typed Language.

ACM Transactions on Programming Languages and Systems 13, 2 (April 1991), 237–268.
Alexander A. Alemi, François Chollet, Niklas Een, Geoffrey Irving, Christian Szegedy, and Josef Urban. 2016. DeepMath -

Deep Sequence Models for Premise Selection. In Proceedings of the 30th International Conference on Neural Information
Processing Systems (NIPS’16). Curran Associates Inc., Barcelona, Spain, 2243–2251.

Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu, and Charles Sutton. 2018. A Survey of Machine Learning for Big

Code and Naturalness. Comput. Surveys 51, 4 (July 2018), 81:1–81:37.

Miltiadis Allamanis, Earl T. Barr, Soline Ducousso, and Zheng Gao. 2020. Typilus: Neural Type Hints. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2020). Association for

Computing Machinery, London, UK, 91–105.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A General Path-Based Representation for Predicting Program

Properties. ACM SIGPLAN Notices 53, 4 (June 2018), 404–419.
Glenn Ammons, Rastislav Bodík, and James R. Larus. 2002. Mining Specifications. In Proceedings of the 29th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’02). Association for Computing Machinery, Portland,

Oregon, 4–16.

Jong-hoon (David) An, Avik Chaudhuri, Jeffrey S. Foster, and Michael Hicks. 2011. Dynamic Inference of Static Types for

Ruby. ACM SIGPLAN Notices 46, 1 (Jan. 2011), 459–472.
Johannes Bader, Jonathan Aldrich, and Éric Tanter. 2018. Gradual Program Verification. In Verification, Model Checking, and

Abstract Interpretation (Lecture Notes in Computer Science), Isil Dillig and Jens Palsberg (Eds.). Springer International

Publishing, Cham, 25–46.

Kshitij Bansal, Sarah Loos, Markus Rabe, Christian Szegedy, and Stewart Wilcox. 2019. HOList: An Environment for Machine

Learning of Higher Order Logic Theorem Proving. In International Conference on Machine Learning. 454–463.
Osbert Bastani, Saswat Anand, and Alex Aiken. 2015. Interactively Verifying Absence of Explicit Information Flows in

Android Apps. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2015). Association for Computing Machinery, Pittsburgh, PA, USA, 299–315.

Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. 2018. Active Learning of Points-to Specifications. In Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2018). Association for

Computing Machinery, Philadelphia, PA, USA, 678–692.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:24 Ravi Mangal

Osbert Bastani, Rahul Sharma, Lazaro Clapp, Saswat Anand, and Alex Aiken. 2019. Eventually Sound Points-To Analysis

with Specifications. In 33rd European Conference on Object-Oriented Programming (ECOOP 2019) (Leibniz International Pro-
ceedings in Informatics (LIPIcs)), Alastair F. Donaldson (Ed.), Vol. 134. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,

Dagstuhl, Germany, 11:1–11:28.

Nels E. Beckman and Aditya V. Nori. 2011. Probabilistic, Modular and Scalable Inference of Typestate Specifications. In

Proceedings of the 32nd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’11).
Association for Computing Machinery, San Jose, California, USA, 211–221.

Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, Robert J. Simmons, Sai Deep Tetali, and Aditya V. Thakur. 2010. Proofs

from Tests. IEEE Transactions on Software Engineering 36, 4 (July 2010), 495–508.

Pavol Bielik, Veselin Raychev, and Martin Vechev. 2017. Learning a Static Analyzer from Data. In Computer Aided Verification
(Lecture Notes in Computer Science), Rupak Majumdar and Viktor Kunčak (Eds.). Springer International Publishing, Cham,

233–253.

Lasse Blaauwbroek, Josef Urban, and Herman Geuvers. 2020. Tactic Learning and Proving for the Coq Proof Assistant. In

EPiC Series in Computing, Vol. 73. EasyChair, 138–150.
Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. 2011. Taming Reflection: Aiding Static Analysis

in the Presence of Reflection and Custom Class Loaders. In Proceedings of the 33rd International Conference on Software
Engineering (ICSE ’11). Association for Computing Machinery, Waikiki, Honolulu, HI, USA, 241–250.

Cristiano Calcagno, Dino Distefano, Peter W. O’Hearn, and Hongseok Yang. 2011. Compositional Shape Analysis by Means

of Bi-Abduction. J. ACM 58, 6 (Dec. 2011), 26:1–26:66.

Robert Cartwright and Mike Fagan. 1991. Soft Typing. In Proceedings of the ACM SIGPLAN 1991 Conference on Programming
Language Design and Implementation (PLDI ’91). Association for Computing Machinery, Toronto, Ontario, Canada,

278–292.

Sooyoung Cha, Sehun Jeong, and Hakjoo Oh. 2016. Learning a Strategy for Choosing Widening Thresholds from a Large

Codebase. In Programming Languages and Systems (Lecture Notes in Computer Science), Atsushi Igarashi (Ed.). Springer
International Publishing, Cham, 25–41.

Kwonsoo Chae, Hakjoo Oh, Kihong Heo, and Hongseok Yang. 2017. Automatically Generating Features for Learning

Program Analysis Heuristics for C-like Languages. Proceedings of the ACM on Programming Languages 1, OOPSLA (Oct.

2017), 101:1–101:25.

Jia Chen, Jiayi Wei, Yu Feng, Osbert Bastani, and Isil Dillig. 2019. Relational Verification Using Reinforcement Learning.

Proceedings of the ACM on Programming Languages 3, OOPSLA (Oct. 2019), 141:1–141:30.

Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan, Vivek Sarkar, and Manu Sridharan. 2002. Efficient

and Precise Datarace Detection for Multithreaded Object-Oriented Programs. ACM SIGPLAN Notices 37, 5 (May 2002),

258–269.

Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. 2003. Counterexample-Guided Abstraction

Refinement for Symbolic Model Checking. J. ACM 50, 5 (Sept. 2003), 752–794.

Patrick Cousot. 1999. The calculational design of a generic abstract interpreter. Calculational system design (1999), 421–505.

Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by

Construction or Approximation of Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (POPL ’77). Association for Computing Machinery, Los Angeles, California, 238–252.

Patrick Cousot and Radhia Cousot. 1979. Systematic Design of Program Analysis Frameworks. In Proceedings of the 6th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL ’79). Association for Computing

Machinery, San Antonio, Texas, 269–282.

Patrick Cousot and Radhia Cousot. 1992. Abstract Interpretation Frameworks. Journal of Logic and Computation 2, 4 (Aug.

1992), 511–547.

Christoph Csallner, Yannis Smaragdakis, and Tao Xie. 2008. DSD-Crasher: A Hybrid Analysis Tool for Bug Finding. ACM
Transactions on Software Engineering and Methodology 17, 2 (May 2008), 8:1–8:37.

David Darais and David Van Horn. 2019/ed. Constructive Galois Connections. Journal of Functional Programming 29

(2019/ed).

David Darais, Nicholas Labich, Phúc C. Nguyen, and David Van Horn. 2017. Abstracting Definitional Interpreters (Functional

Pearl). Proceedings of the ACM on Programming Languages 1, ICFP (Aug. 2017), 12:1–12:25.

David Darais, Matthew Might, and David Van Horn. 2015. Galois Transformers and Modular Abstract Interpreters: Reusable

Metatheory for Program Analysis. In Proceedings of the 2015 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2015). Association for Computing Machinery, Pittsburgh,

PA, USA, 552–571.

David Devecsery, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. 2018. Optimistic Hybrid Analysis: Accelerating

Dynamic Analysis through Predicated Static Analysis. In Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating Systems (ASPLOS ’18). Association for Computing

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:25

Machinery, Williamsburg, VA, USA, 348–362.

Isil Dillig, Thomas Dillig, and Alex Aiken. 2012. Automated Error Diagnosis Using Abductive Inference. In Proceedings of
the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’12). Association for

Computing Machinery, Beijing, China, 181–192.

Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. 2007. Blended Analysis for Performance Understanding of Framework-

Based Applications. In Proceedings of the 2007 International Symposium on Software Testing and Analysis (ISSTA ’07).
Association for Computing Machinery, London, United Kingdom, 118–128.

Tayfun Elmas, Shaz Qadeer, and Serdar Tasiran. 2007. Goldilocks: A Race and Transaction-Aware Java Runtime. ACM
SIGPLAN Notices 42, 6 (June 2007), 245–255.

Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao.

2007. The Daikon System for Dynamic Detection of Likely Invariants. Science of Computer Programming 69, 1-3 (Dec.

2007), 35–45.

Grigory Fedyukovich, Samuel J. Kaufman, and Rastislav Bodík. 2017. Sampling Invariants from Frequency Distributions. In

2017 Formal Methods in Computer Aided Design (FMCAD). 100–107.
Mattias Felleisen and D. P. Friedman. 1987. A Calculus for Assignments in Higher-Order Languages. In Proceedings of the

14th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL ’87). Association for Computing

Machinery, Munich, West Germany, 314.

Cormac Flanagan. 2006. Hybrid Type Checking. In Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’06). Association for Computing Machinery, Charleston, South Carolina,

USA, 245–256.

Michael Furr, Jong-hoon (David) An, and Jeffrey S. Foster. 2009. Profile-Guided Static Typing for Dynamic Scripting

Languages. In Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and
Applications (OOPSLA ’09). Association for Computing Machinery, Orlando, Florida, USA, 283–300.

Pranav Garg, Christof Löding, P. Madhusudan, and Daniel Neider. 2014. ICE: A Robust Framework for Learning Invariants.

In Computer Aided Verification (Lecture Notes in Computer Science), Armin Biere and Roderick Bloem (Eds.). Springer

International Publishing, Cham, 69–87.

Pranav Garg, Daniel Neider, P. Madhusudan, and Dan Roth. 2016. Learning Invariants Using Decision Trees and Implication

Counterexamples. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’16). Association for Computing Machinery, St. Petersburg, FL, USA, 499–512.

Neville Grech, George Fourtounis, Adrian Francalanza, and Yannis Smaragdakis. 2017. Heaps Don’t Lie: Countering

Unsoundness with Heap Snapshots. Proceedings of the ACM on Programming Languages 1, OOPSLA (Oct. 2017), 68:1–

68:27.

Radu Grigore and Hongseok Yang. 2016. Abstraction Refinement Guided by a Learnt Probabilistic Model. In Proceedings of
the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’16). Association for

Computing Machinery, St. Petersburg, FL, USA, 485–498.

Ashutosh Gupta, Rupak Majumdar, and Andrey Rybalchenko. 2009. From Tests to Proofs. In Tools and Algorithms for the
Construction and Analysis of Systems (Lecture Notes in Computer Science), Stefan Kowalewski and Anna Philippou (Eds.).

Springer, Berlin, Heidelberg, 262–276.

Rajiv Gupta, Mary Lou Soffa, and John Howard. 1997. Hybrid Slicing: Integrating Dynamic Information with Static Analysis.

ACM Transactions on Software Engineering and Methodology 6, 4 (Oct. 1997), 370–397.

Jingxuan He, Gagandeep Singh, Markus Püschel, and Martin Vechev. 2020. Learning Fast and Precise Numerical Analysis.

In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2020).
Association for Computing Machinery, London, UK, 1112–1127.

Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. 2018. Deep Learning Type Inference. In

Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (ESEC/FSE 2018). Association for Computing Machinery, Lake Buena Vista, FL, USA,

152–162.

Fritz Henglein. 1994. Dynamic Typing: Syntax and Proof Theory. Science of Computer Programming 22, 3 (June 1994),

197–230.

Kihong Heo, Hakjoo Oh, and Hongseok Yang. 2016. Learning a Variable-Clustering Strategy for Octagon from Labeled Data

Generated by a Static Analysis. In Static Analysis (Lecture Notes in Computer Science), Xavier Rival (Ed.). Springer, Berlin,
Heidelberg, 237–256.

Kihong Heo, Hakjoo Oh, and Kwangkeun Yi. 2017. Machine-Learning-Guided Selectively Unsound Static Analysis. In 2017
IEEE/ACM 39th International Conference on Software Engineering (ICSE). 519–529.

Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. 2017. Data-Driven Context-Sensitivity for Points-to Analysis.

Proceedings of the ACM on Programming Languages 1, OOPSLA (Oct. 2017), 100:1–100:28.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:26 Ravi Mangal

Cezary Kaliszyk, Josef Urban, Henryk Michalewski, and Miroslav Olšák. 2018. Reinforcement Learning of Theorem

Proving. In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 8822–8833.

Sven Keidel and Sebastian Erdweg. 2019. Sound and Reusable Components for Abstract Interpretation. Proceedings of the
ACM on Programming Languages 3, OOPSLA (Oct. 2019), 176:1–176:28.

Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg. 2018. Compositional Soundness Proofs of Abstract Interpreters.

Proceedings of the ACM on Programming Languages 2, ICFP (July 2018), 72:1–72:26.

Johannes Kinder and Dmitry Kravchenko. 2012. Alternating Control Flow Reconstruction. In Verification, Model Checking,
and Abstract Interpretation (Lecture Notes in Computer Science), Viktor Kuncak and Andrey Rybalchenko (Eds.). Springer,

Berlin, Heidelberg, 267–282.

Kenneth Knowles and Cormac Flanagan. 2010. Hybrid Type Checking. ACM Transactions on Programming Languages and
Systems 32, 2 (Feb. 2010), 6:1–6:34.

Ted Kremenek, Ken Ashcraft, Junfeng Yang, and Dawson Engler. 2004. Correlation Exploitation in Error Ranking. ACM
SIGSOFT Software Engineering Notes 29, 6 (Oct. 2004), 83–93.

Ted Kremenek and Dawson Engler. 2003. Z-Ranking: Using Statistical Analysis to Counter the Impact of Static Analysis

Approximations. In Static Analysis (Lecture Notes in Computer Science), Radhia Cousot (Ed.). Springer, Berlin, Heidelberg,
295–315.

Ted Kremenek, Paul Twohey, Godmar Back, Andrew Ng, and Dawson Engler. 2006. From Uncertainty to Belief: Inferring

the Specification Within. In Proceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI
’06). USENIX Association, Seattle, Washington, 161–176.

Ton Chanh Le, Guolong Zheng, and ThanhVu Nguyen. 2019. SLING: Using Dynamic Analysis to Infer Program Invari-

ants in Separation Logic. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI 2019). Association for Computing Machinery, Phoenix, AZ, USA, 788–801.

Sheng Liang, Paul Hudak, and Mark Jones. 1995. Monad Transformers and Modular Interpreters. In Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’95). Association for Computing

Machinery, San Francisco, California, USA, 333–343.

Benjamin Livshits, Aditya V. Nori, Sriram K. Rajamani, and Anindya Banerjee. 2009. Merlin: Specification Inference for

Explicit Information Flow Problems. In Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’09). Association for Computing Machinery, Dublin, Ireland, 75–86.

Sarah Loos, Geoffrey Irving, Christian Szegedy, and Cezary Kaliszyk. 2017. Deep Network Guided Proof Search. In LPAR-21.
21st International Conference on Logic for Programming, Artificial Intelligence and Reasoning. 85–105.

Ravi Mangal, Xin Zhang, Aditya V. Nori, and Mayur Naik. 2015. A User-Guided Approach to Program Analysis. In

Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2015). Association for

Computing Machinery, Bergamo, Italy, 462–473.

Anders Miltner, Saswat Padhi, Todd Millstein, and David Walker. 2020. Data-Driven Inference of Representation Invariants.

In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2020).
Association for Computing Machinery, London, UK, 1–15.

Markus Mock, Darren C. Atkinson, Craig Chambers, and Susan J. Eggers. 2002. Improving Program Slicing with Dynamic

Points-to Data. In Proceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software Engineering (SIGSOFT
’02/FSE-10). Association for Computing Machinery, Charleston, South Carolina, USA, 71–80.

Andrew C. Myers. 1999. JFlow: Practical Mostly-Static Information Flow Control. In Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’99). Association for Computing Machinery, San

Antonio, Texas, USA, 228–241.

Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic. 2010. CETS: Compiler Enforced Temporal

Safety for C. In Proceedings of the 2010 International Symposium on Memory Management (ISMM ’10). Association for

Computing Machinery, Toronto, Ontario, Canada, 31–40.

Mayur Naik, Hongseok Yang, Ghila Castelnuovo, and Mooly Sagiv. 2012. Abstractions from Tests. In Proceedings of the
39th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’12). Association for

Computing Machinery, Philadelphia, PA, USA, 373–386.

George C. Necula, Scott McPeak, and Westley Weimer. 2002. CCured: Type-Safe Retrofitting of Legacy Code. ACM SIGPLAN
Notices 37, 1 (Jan. 2002), 128–139.

Phúc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. 2017. Soft Contract Verification for Higher-

Order Stateful Programs. Proceedings of the ACM on Programming Languages 2, POPL (Dec. 2017), 51:1–51:30.

Phúc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. 2017/ed. Higher Order Symbolic Execution for Contract

Verification and Refutation*. Journal of Functional Programming 27 (2017/ed).

Phúc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. 2014. Soft Contract Verification. ACM SIGPLAN Notices 49, 9
(Aug. 2014), 139–152.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

Observational Abstract Interpreters 1:27

Hakjoo Oh, Hongseok Yang, and Kwangkeun Yi. 2015. Learning a Strategy for Adapting a Program Analysis via Bayesian

Optimisation. ACM SIGPLAN Notices 50, 10 (Oct. 2015), 572–588.
Saswat Padhi, Rahul Sharma, and Todd Millstein. 2016. Data-Driven Precondition Inference with Learned Features. In

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16).
Association for Computing Machinery, Santa Barbara, CA, USA, 42–56.

Mukund Raghothaman, Sulekha Kulkarni, Kihong Heo, and Mayur Naik. 2018. User-Guided Program Reasoning Using

Bayesian Inference. ACM SIGPLAN Notices 53, 4 (June 2018), 722–735.
Veselin Raychev, Martin Vechev, and Andreas Krause. 2015. Predicting Program Properties from "Big Code". ACM SIGPLAN

Notices 50, 1 (Jan. 2015), 111–124.
Thomas Reps, Mooly Sagiv, and Greta Yorsh. 2004. Symbolic Implementation of the Best Transformer. In Verification,

Model Checking, and Abstract Interpretation (Lecture Notes in Computer Science), Bernhard Steffen and Giorgio Levi (Eds.).

Springer, Berlin, Heidelberg, 252–266.

John C. Reynolds. 2000. The Meaning of Types From Intrinsic to Extrinsic Semantics. BRICS Report Series 32 (June 2000).
Dustin Rhodes, Cormac Flanagan, and Stephen N. Freund. 2017. BigFoot: Static Check Placement for Dynamic Race

Detection. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2017). Association for Computing Machinery, Barcelona, Spain, 141–156.

H. G. Rice. 1953. Classes of Recursively Enumerable Sets and Their Decision Problems. Trans. Amer. Math. Soc. 74, 2 (1953),
358–366.

Alex Sanchez-Stern, Yousef Alhessi, Lawrence Saul, and Sorin Lerner. 2020. Generating Correctness Proofs with Neural

Networks. In Proceedings of the 4th ACM SIGPLAN International Workshop on Machine Learning and Programming
Languages (MAPL 2020). Association for Computing Machinery, London, UK, 1–10.

Sriram Sankaranarayanan, Swarat Chaudhuri, Franjo Ivančić, and Aarti Gupta. 2008. Dynamic Inference of Likely Data

Preconditions over Predicates by Tree Learning. In Proceedings of the 2008 International Symposium on Software Testing
and Analysis (ISSTA ’08). Association for Computing Machinery, Seattle, WA, USA, 295–306.

Ilya Sergey, Dominique Devriese, Matthew Might, Jan Midtgaard, David Darais, Dave Clarke, and Frank Piessens. 2013.

Monadic Abstract Interpreters. ACM SIGPLAN Notices 48, 6 (June 2013), 399–410.
Rahul Sharma and Alex Aiken. 2016. From Invariant Checking to Invariant Inference Using Randomized Search. Formal

Methods in System Design 48, 3 (June 2016), 235–256.

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, Percy Liang, and Aditya V. Nori. 2013b. A Data Driven

Approach for Algebraic Loop Invariants. In Programming Languages and Systems (Lecture Notes in Computer Science),
Matthias Felleisen and Philippa Gardner (Eds.). Springer, Berlin, Heidelberg, 574–592.

Rahul Sharma, Saurabh Gupta, Bharath Hariharan, Alex Aiken, and Aditya V. Nori. 2013a. Verification as Learning Geometric

Concepts. In Static Analysis (Lecture Notes in Computer Science), Francesco Logozzo and Manuel Fähndrich (Eds.). Springer,

Berlin, Heidelberg, 388–411.

Xujie Si, Hanjun Dai, Mukund Raghothaman, Mayur Naik, and Le Song. 2018. Learning Loop Invariants for Program

Verification. In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,

N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates, Inc., 7751–7762.

Jeremy G. Siek and Walid Taha. 2006. Gradual Typing for Functional Languages. In In Scheme and Functional Programming
Workshop.

Gagandeep Singh, Markus Püschel, and Martin Vechev. 2018. Fast Numerical Program Analysis with Reinforcement Learning.

In Computer Aided Verification (Lecture Notes in Computer Science), Hana Chockler and Georg Weissenbacher (Eds.).

Springer International Publishing, Cham, 211–229.

Nataliia Stulova, José F. Morales, and Manuel V. Hermenegildo. 2016. Reducing the Overhead of Assertion Run-Time

Checks via Static Analysis. In Proceedings of the 18th International Symposium on Principles and Practice of Declarative
Programming (PPDP ’16). Association for Computing Machinery, Edinburgh, United Kingdom, 90–103.

A. Thakur, A. Lal, J. Lim, and T. Reps. 2015. PostHat and All That: Automating Abstract Interpretation. Electronic Notes in
Theoretical Computer Science 311 (Feb. 2015), 15–32.

Satish Thatte. 1989. Quasi-Static Typing. In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL ’90). Association for Computing Machinery, San Francisco, California, USA, 367–381.

Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Migration: From Scripts to Programs. In Companion to
the 21st ACM SIGPLAN Symposium on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA ’06).
Association for Computing Machinery, Portland, Oregon, USA, 964–974.

Sam Tobin-Hochstadt and David Van Horn. 2012. Higher-Order Symbolic Execution via Contracts. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems Languages and Applications (OOPSLA ’12). Association
for Computing Machinery, Tucson, Arizona, USA, 537–554.

David Van Horn and Matthew Might. 2010. Abstracting Abstract Machines. In Proceedings of the 15th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’10). Association for Computing Machinery, Baltimore,

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

1:28 Ravi Mangal

Maryland, USA, 51–62.

Niki Vazou, Éric Tanter, and David Van Horn. 2018. Gradual Liquid Type Inference. Proceedings of the ACM on Programming
Languages 2, OOPSLA (Oct. 2018), 132:1–132:25.

Philip Wadler. 1992. The Essence of Functional Programming. In Proceedings of the 19th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’92). Association for Computing Machinery, Albuquerque, New Mexico,

USA, 1–14.

P. Wadler and S. Blott. 1989. How to Make Ad-Hoc Polymorphism Less Ad Hoc. In Proceedings of the 16th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’89). Association for Computing Machinery, Austin,

Texas, USA, 60–76.

Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. 2019. LambdaNet: Probabilistic Type Inference Using Graph Neural

Networks. In International Conference on Learning Representations.
Shiyi Wei and Barbara G. Ryder. 2013. Practical Blended Taint Analysis for JavaScript. In Proceedings of the 2013 International

Symposium on Software Testing and Analysis (ISSTA 2013). Association for Computing Machinery, Lugano, Switzerland,

336–346.

He Zhu, Stephen Magill, and Suresh Jagannathan. 2018. A Data-Driven CHC Solver. In Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 2018). Association for Computing Machinery,

Philadelphia, PA, USA, 707–721.

He Zhu, Aditya V. Nori, and Suresh Jagannathan. 2015. Learning Refinement Types. In Proceedings of the 20th ACM SIGPLAN
International Conference on Functional Programming (ICFP 2015). Association for Computing Machinery, Vancouver, BC,

Canada, 400–411.

He Zhu, Gustavo Petri, and Suresh Jagannathan. 2016. Automatically Learning Shape Specifications. In Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’16). Association for

Computing Machinery, Santa Barbara, CA, USA, 491–507.

Proc. ACM Program. Lang., Vol. 1, No. CONF, Article 1. Publication date: January 2020.

	Abstract
	1 Introduction
	2 Language Definition
	3 Monadic Interpreters: Concrete and Abstract
	3.1 Concrete Monadic Interpreter
	3.2 Abstract Monadic Interpreter

	4 Observational Abstract Interpreters
	4.1 Observational Interval Analysis for S

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

