Checking Probabilistic Properties of Neural

Networks via Symbolic

Ravi Mangal%

@fGeorgia Institute of Technology

{rmangal3, orso}@gatech.edu

Abstract—The study of verification and testing techniques for
neural networks is in its infancy. The formal problem statement
as well as the techniques for solving the problem are constantly
evolving. We forward two informal hypotheses that, if true, can
help guide future research. First, correctness properties of neural
network properties need to be probabilistic in order to capture
the practical correctness semantics of neural networks. Second,
checking such properties will require a synergistic combination
of sampling and symbolic techniques.

The theory of neural networks is riddled with open questions
such as, (i) Why do gradient descent based learning algorithms
efficiently learn neural networks that show low rates of training
error? (i) Why are such trained networks able to generalize to
unseen data? (iii) Given a trained neural network, how can we
ensure that it is adversarially robust, fair, and secure? While
the first two questions require an analysis of the algorithms
used for training neural networks, the third question requires
analyzing trained neural networks. Since a trained neural
network is essentially a computational object representing a
function from a real-valued vector to a real-valued vector
R™ — R™), it is possible to employ tools from program
verification and testing literature to analyze these objects.

The starting point of any verification or testing technique
is a logical specification of program correctness. Neural net-
works, however, are used exactly when such logical cor-
rectness specifications are unavailable. The only available
specification is in the form of input-output data. In this context,
besides accuracy with respect to the available training data,
what property of neural networks can we possibly check?
Recent works have revealed a number of desirable properties
about the structure of the function represented by a neural
network. For instance, the presence of adversarial examples
[1] has revealed that it is desirable for a neural network to
represent a Lipschitz function, such that small changes in
the input are guaranteed to result in bounded changes in the
output. Other proposed properties of neural networks include
fairness [2], and privacy [3], [4]. In general, while defining full
functional correctness specifications is not possible for neural
networks, partial specifications have found popularity.

Although neural networks represent a deterministic mapping
from inputs to outputs, the real-world processes that they
model have inherent randomness. A real-world process might
be envisaged as follows: The inputs are generated according
to some distribution D. Given an input x from D, there is a
deterministic function mapping x to the output y. The goal of

Aditya V. Nori"

Methods and Sampling

Alessandro Orso™

"' Microsoft Research
adityan @microsoft.com

the neural network learning algorithm is to infer this mapping
given (x;,y;) pairs as training data. It is natural then to reason
about the properties of a neural network with respect to the
input distribution. Although the input distribution is typically
unknown, it can be approximated based on the available data.
In such a scenario, probabilistic properties can more effectively
capture practical correctness semantics of neural networks. For
instance, if a neural network exhibits lack of robustness only at
very unlikely inputs, it might be reasonable to declare such a
network as robust. Another argument in favor of probabilistic
properties is based on the fact that learning algorithms are
themselves stochastic, and so, it is highly unlikely that a
trained neural network would exhibit correct behavior over
the entire input space. This leads to our first hypothesis.

Hypothesis One. The inherent stochastic nature of neu-
ral network training algorithms strongly suggests expressing
global correctness properties in a probabilistic form.

Standard program verification techniques are geared towards
finding proofs of program correctness, i.e., proving that the
program satisfies the property of interest on all inputs. Stan-
dard testing techniques are geared towards finding counter-
examples that exhibit property violation. Neither of these
perspectives is suitable for checking probabilistic properties.
Checking correctness on all inputs is unnecessary, while
finding a single property violating input is not sufficient
for showing probabilistic violation. A simple approach for
checking probabilistic properties is to sample inputs from the
input distribution, execute the neural network on each sample,
and check if the property is violated by the sample. The ratio
of the number of samples that violate the property to the total
number of samples drawn gives an estimate of the probability
of property satisfaction. Although simple, in order to compute
accurate estimates for the potentially unlikely event of property
violation, a prohibitively large number of samples might need
to be drawn. We believe that a symbolic analysis of the neural
networks can help reduce redundant sampling, and improve
the sampling efficiency. Examples of such symbolic techniques
that might be helpful include abstract interpretation, symbolic
execution, and weakest precondition computation. This leads
to our second hypothesis.

Hypothesis Two. Probabilistic properties can be checked by
reduction to a sampling problem. To improve sample efficiency,
we can employ symbolic techniques for analyzing the neural
networks.



(1]

(2]

(3]

[4]

REFERENCES

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
2013. [Online]. Available: http://arxiv.org/abs/1312.6199

C. Dwork, M. Hardt, T. Pitassi, O. Reingold, and R. Zemel, “Fairness
through awareness,” in Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ser. ITCS *12, 2012.

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in Proceedings
of the 23rd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’16, 2016.

R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS *15, 2015.



