

Discrete Math Review

TOPICS

- Propositional and Predicate Logic
- Logical Operators and Truth Tables
- Logical Equivalences and Inference Rules

Discrete Math Review

- What you should know about discrete math before the midterm.
- Less theory, more problem solving, focuses on exam problems, use as study sheet!

Propositional Logic

- A proposition is a statement that is either true or false
- Examples:
 - Fort Collins is in Nebraska (false)
 - Java is case sensitive (true)
 - We are not alone in the universe (?)
- Every proposition is true or false, but its *truth* value may be unknown

Logical Operators

- ¬ logical not (negation)
- v logical or (disjunction)
- Iogical and (conjunction)
- Iogical exclusive or
- \rightarrow logical implication (conditional)
- ↔ logical bi-implication (biconditional)

 (1) You should be able to write out the truth table for all logical operators, from memory.

CS160 - Fall Semester 2015

Compound Propositions

- Propositions and operators can be combined into compound propositions.
- (2) You should be able to make a truth table for any compound proposition:

p	q	-р	$p \rightarrow q$	$\neg p \land (p \rightarrow q)$
Т	Т	F	Т	F
Т	F	F	F	F
F	Т	Т	Т	Т
F	F	Т	Т	Т

CS160 - Fall Semester 2015

English to Propositional Logic

- (3) You should be able to translate natural language to logic (can be ambiguous!):
- English:

"If the car is out of gas, then it will stop"

Logic:

p equals "the car is out of gas"

q equals "the car will stop"

p → q

Propositional Logic to English

- (4) You should be able to translate propositional logic to natural language:
- Logic:

p equals "it is raining"

- q equals "the grass will be wet"
- $p \rightarrow q$
- English:

"If it is raining, the grass will be wet."

Logical Equivalences: Definition

- Certain propositions are equivalent (meaning they share exactly the same truth values):
- For example:

$$\neg (p \land q) \equiv \neg p \lor \neg q \qquad D$$
$$(p \land T) \equiv p \qquad Ic$$
$$(p \land \neg p) \equiv F \qquad N$$

De Morgan's Identity Law Negation Law

Logical Equivalences: Truth Tables

 (5) And you should know how to prove logical equivalence with a truth table

• For example: $\neg(p \land q) \equiv \neg p \lor \neg q$

р	q	¬р	$\neg q$	(p ^ q)	¬(p ∧ q)	¬p v ¬q
Т	Т	F	F	Т	F	F
Т	F	F	Т	F	Т	Т
F	Т	Т	F	F	Т	Т
F	F	Т	Т	F	Т	Т

CS160 - Fall Semester 2015

Logical Equivalences: Review

- (6) You should understand the logical equivalences and laws on the course web site.
- You should be able to prove any of them using a truth table that compares the truth values of both sides of the equivalence.
- Memorization of the logical equivalences is not required in this class.

Logical Equivalences (Rosen)

Logical Equivalences

Idempotent Laws	DeMorgan's Laws	Distributive Laws
$p \lor p \equiv p$	$\neg (p \land q) \equiv \neg p \lor \neg q$	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
$p \land p \equiv p$	$\neg (p \lor q) \equiv \neg p \land \neg q$	$p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
Double Negation	Absorption Laws	Associative Laws

Double Negation $\neg(\neg p) \equiv p$

Absorption Laws					
р	V	(р	۸	q)	≡p
р	Λ	(р	V	q)	≡p

Commutative Laws $p \lor q \equiv q \lor p$ $p \land q \equiv q \land p$

aws Implication Laws $p \rightarrow q \equiv \neg p \lor q$ $p \rightarrow q \equiv \neg q \rightarrow \neg p$ Associative Laws $(p \lor q) \lor r \equiv p \lor (q \lor r)$ $(p \land q) \land r \equiv p \land (q \land r)$

Biconditional Laws $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ $p \leftrightarrow q \equiv \neg q \leftrightarrow \neg p$

Transformation via Logical Equivalences

(7) You should be able to transform propositions using logical equivalences.

Prove:
$$\neg p \lor (p \land q) \equiv \neg (p \land \neg q)$$

$$\neg p \lor (p \land q) \equiv (\neg p \lor p) \land (\neg p \lor q)$$
$$\equiv T \land (\neg p \lor q)$$
$$\equiv (\neg p \lor q)$$
$$\equiv (\neg p \lor q)$$

- Distributive law
- Negation law
- Domination law
- De Morgan's Law

Vocabulary

- (8) You should memorize the following vocabulary:
 - A tautology is a compound proposition that is always true.
 - A contradiction is a compound proposition that is always false.
 - A contingency is neither a tautology nor a contradiction.
- And know how to decide the category for a compound proposition.

Examples

CS160 - Fall Semester 2015

Logical Proof

- Given a set of axioms
 - Statements asserted to be true
- Prove a conclusion
 - Another propositional statement
- In other words:
 - Show that the conclusion is true ...
 - ... whenever the axioms are true

Logical Proof

- (9) You should be able to perform a logical proof via truth tables.
- (10) You should be able to perform a logical proof via inference rules.
- Both methods are described in the following slides.

Method 1: Proof by Truth Table

Method 2: Proof using Rules of Inference

- A rule of inference is a proven relation: when the left hand side (LHS) is true, the right hand side (RHS) is also true.
- Therefore, if we can match an axiom to the LHS by substituting propositions, we can assert the (substituted) RHS

Applying rules of inference

- Example rule: $p, p \rightarrow q \therefore q$
 - Read as "p and $p \rightarrow q$, therefore q"
 - This rule has a name: *modus ponens*
- If you have axioms $r, r \rightarrow s$
 - Substitute r for p, s for q
 - Apply modus ponens
 - Conclude s

Modus Ponens

- If p, and p implies q, then q
- Example:
- p = it rains, q = the lawn will be wet
- $p \rightarrow q$, when it rains, then the lawn will be wet
- "Given the above, if it rains, the lawn must be wet"
- Even if we cannot observe the lawn!

Modus Tollens

- If not q and p implies q, then not p Example:
- p = it rains, q = the lawn will be wet
- $p \rightarrow q$, when it rains, then the lawn will be wet
- "Given the above, if the lawn is not wet, it cannot have rained."
- Even if we did not observe the weather!

Rules of Inference (Rosen)

Rules of Inference

Modus Ponens	Modus Tollens	Hypothetical Syllogism
p	$\neg q$	$p \rightarrow q$
$p \rightarrow q$	$p \rightarrow q$	$q \rightarrow r$
\overline{q}	$\neg p$	$p \rightarrow r$
Addition	Resolution	Disjunctive Syllogism
р	pvq	pvq
$\overline{p \vee q}$	$\neg p \lor r$	$\neg p$
	$q \vee r$	\overline{q}
Simplification	Conjunction	
рлд	p	
$\overline{\rho}$	\overline{q}	
	$\overline{p \wedge q}$	

CS160 - Fall Semester 2015

A Simple Proof: Problem Statement

Example of a complete proof using inference rules, from English to propositional logic and back:

- If you don't go to the store, then you cannot not cook dinner. (axiom)
- If you cannot cook dinner or go out, you will be hungry tonight. (axiom)
- You are not hungry tonight, and you didn't go to the store. (axiom)
- You must have gone out to dinner. (conclusion)

A Simple Proof: Logic Translation

- p: you go to the store
- q: you can cook dinner
- r: you will go out
- s: you will be hungry
- AXIOMS: $\neg p \rightarrow \neg q$, $\neg (q \lor r) \rightarrow s$, $\neg s$, $\neg p$
- CONCLUSION: r

A Simple Proof: Applying Inference

1.	$\neg p \rightarrow \neg q$	Axiom	
2.	$\neg(q \lor r) \rightarrow s$	Axiom	
3.	¬S	Axiom	
4.	¬р	Axiom	
5.	¬q	Modus Ponens (1, 4)	
6.	q v r	Modus Tollens (2, 3)	
7.	r	Disjunctive Syllogism (5, 6)	
CONCLUSION: You must have gone out to dinner!			

Predicate Logic

- (11) You should recognize predicate logic symbols, i.e. quantifications.
- Quantification express the extent to which a predicate is true over a set of elements:
 - Universal ∀, "for all"
 - Existential 3, "there exists"
- (12) You should able to translate between predicate logic and English, in both directions.

Predicate Logic (cont'd)

- Specifies a proposition (and optionally a domain), for example:
 - $\exists x \in N, -10 < x < -5$ // False, since no negative x
 - $\forall x \in N, x > -1$ // True, since no negative x
- (13) Must be able to find examples

• to prove \exists , e.g. $\exists x \in Z$, -1 < x < 1, x = 0

- (14) Must be able to find counterexamples
 - to disprove \forall , e.g. $\forall x \in Z, x > -1, x = -2$
 - to prove ∀, you need to make a mathematical argument that holds for all values of x.