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ABSTRACT
This paper examines the deployment of the DNS Security
Extensions (DNSSEC), which adds cryptographic protec-
tion to DNS, one of the core components in the Internet
infrastructure. We analyze the data collected from the ini-
tial DNSSEC deployment which started over 2 years ago,
and identify three critical metrics to gauge the deployment:
availability, verifiability, and validity. Our results provide
the first comprehensive look at DNSSEC’s deployment and
reveal a number of challenges that were not anticipated
in the design but have become evident in the deployment.
First, obstacles such as middle-boxes (firewalls, NATs, etc.)
that exist in today’s Internet infrastructure have proven to
be problematic and have resulted in unforeseen availabil-
ity problems. Second, the public-key delegation system of
DNSSEC has not evolved as it was hoped and it currently
leaves over 97% of DNSSEC zones isolated and unverifi-
able, unless some external key authentication mechanism is
added. Furthermore, our results show that cryptographic
verification is not equivalent to validation; a piece of verified
data can still contain the wrong value. Finally, our results
demonstrate the essential role of monitoring and measure-
ment in the DNSSEC deployment. We believe that the ob-
servations and lessons from the DNSSEC deployment can
provide insights into measuring future Internet-scale cryp-
tographic systems.

Categories and Subject Descriptors
C.2.0 [Computer Systems Organization]: Computer -
Communication Networks - Security and protection; C.2.3
[Computer Systems Organization]: Computer - Com-
munication Networks - Network Monitoring; C.4 [Computer
Systems Organization]: Performance of Systems

General Terms
Management, Measurement, Security
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1. INTRODUCTION
It is widely recognized that security is a fundamental chal-

lenge facing the Internet today, and cryptographic technolo-
gies are generally viewed as a powerful tool-set for addressing
security challenges. Over the past several years, there have
been a number of efforts to retrofit existing protocols with
cryptographic protection [4, 6, 5, 9, 13, 19]. One clear lesson
that has emerged from these efforts is that adding crypto-
graphic protection to existing systems tends to be difficult.
This is especially true for Internet-scale systems. Internet-
scale systems are large in size as measured by the num-
ber of their components, which belong to a large number
of independent administrative authorities without any cen-
tral control. Yet deploying a cryptographic protection in an
Internet-scale system means that the mechanism needs to
be deployed across the entire Internet and can be used by
all desired parties in a cohesive manner.

In this paper we examine the DNS Security Extensions
(DNSSEC)[4, 6, 5]. The DNSSEC protocol set is considered
mature and its global deployment efforts started a few years
ago. Our SecSpider monitoring project[3] has been track-
ing the DNSSEC deployment since shortly after the rollout
began. Our public site tracks the number of secured DNS
zones as viewed from diverse locations around the globe. It
allows one to determine whether a particular zone has turned
on DNSSEC and also tracks the evolution of zone specific
operational decisions, such as the choice of public keys and
signature lifetimes. Live data has been available for a few
years and historical data dating back to the first few months
of DNSSEC deployment is also available.

To quantify both the effectiveness of cryptographic protec-
tion that early DNSSEC adopters may gain and the obstacle
in DNSSEC deployment, we analyze the collected DNSSEC
monitoring data using three measurement metrics: availabil-
ity, verifiability, and validity. Our measurement and analy-
sis show that there are a number of challenges that were not
anticipated in the design but have become evident in the de-
ployment. First, middleboxes, such as firewalls and NATs,
that exist in today’s Internet infrastructure have proven to
be obstacles in DNSSEC rollout and have resulted in unfore-
seen availability problems. Second, the public-key delega-
tion system in the DNSSEC design has not evolved as it was
hoped and it currently leaves more than 97% of DNSSEC-



enabled zones isolated and unverifiable, unless some external
key authentication mechanism is added. Third, our results
show that cryptographic protection has its own limitations.
That is, cryptographic verification is not equivalent to val-
idation; a piece of cryptographically verified data can still
contain incorrect value.

Our contributions in this paper are three-fold. First, based
on our observations of the current DNSSEC deployment, we
derive three basic metrics to quantify the effectiveness of
DNSSEC’s deployment. Our earlier measurement results
reported in [15] provided some basic observations includ-
ing the number of existing DNSSEC zones, the operational
practice in managing cryptographic deployment, and the ex-
istence of vulnerability to replay attacks; this paper not only
reports more recent measurement data, but most impor-
tantly, the newly defined metrics enable us to quantify the
observed problems in a meaningful way. Second, our mea-
surement results expose previously undocumented open is-
sues in the DNSSEC deployment. Third, our results demon-
strated the essential role of monitoring and measurement in
the DNSSEC deployment. We believe that the observations
and lessons reported in this paper can provide insights into
the challenges in developing future Internet cryptographic
systems.

The remainder of this papers is organized as follows. Sec-
tion 2 discusses the general design of DNSSEC. Next, in
Section 3 we describe our basic approach to monitoring and
quantifying the deployment of DNSSEC. In Section 4 we
present the quantitative results of analyzing DNSSEC. Lastly,
we discuss our findings and conclusions in Section 5.

2. BACKGROUND
The Domain Name System (DNS) maps hostnames such

as www.ucla.edu to IP addresses and provides a wide range
of other mapping services ranging from email to geographic
location. Virtually every Internet application relies on look-
ing up certain DNS data. In this section we introduce a
basic set of DNS terminology which is used throughout the
text, including resource records (RRs), resource record sets
(RRsets), and zones, followed by an overview of the DNS
Security Extensions.

All DNS data is stored in the same data structure called
Resource Records (RRs), and each RR has an associated
name, class, and type. For example, an IPv4 address for
www.ucla.edu is stored in an RR with name www.ucla.edu,
class IN (Internet), and type A (IPv4 address). A host
with several IPv4 addresses will have several RRs, each
with the same name, class, and type but its own IPv4 ad-
dress. The set of all resource records associated with the
same name, class, and type is called an Resource Record Set
(RRset). DNS resolvers query for RRsets. For example,
when a browser queries for 〈www.ucla.edu, IN, A〉, the re-
ply will be the RRset for www.ucla.edu with all the IPv4
addresses for that name. Note that the smallest unit that
can be requested in a query is an RRset, and all DNS actions
including cryptographic signatures, discussed later, apply to
RRsets instead of individual RRs.

The DNS is a distributed database organized in a tree
structure. At the top of the tree, the root zone delegates
authority to top level domains like com., net., org., and
edu.. The zone com. then delegates authority to create
google.com., edu. delegates authority to create ucla.edu.,
and so forth. In the resulting DNS tree structure, each node
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Figure 1: Resolvers preconfigure the root zone’s public key

as a trust anchor (T a) and can then trace a “chain of trust”

from that key down the DNSSEC hierarchy to any zone’s key

that they have encountered.

corresponds to a zone. Each zone belongs to a single admin-
istrative authority and is served by multiple authoritative
nameservers to provide name resolution services for all the
names in the zone. Every RRset in the DNS belongs to a
specific zone and stored at the nameservers of that zone. For
example, the RRset for 〈www.ucla.edu, IN, A〉 belongs to
the ucla.edu zone and stored in the ucla.edu nameservers;
while the RRset for 〈www.colostate.edu, IN, A〉 belongs
to the colostate.edu zone and stored in the colostate.edu
nameservers.

2.1 DNSSEC Overview
Security was not a primary objective when the DNS was

designed in mid 80’s and a number of well known vulner-
abilities have been identified [8, 7]. DNSSEC provides a
cryptographic solution to the problem, which seems pretty
simple and intuitive. To prove that data in a DNS reply
is authentic, each zone creates public/private key pairs and
then uses the private portions to sign data. Its public keys
are stored in a new type of RR called DNSKEY, and all the sig-
natures are stored in another new type of RR called RRSIG.
In response to a query, an authoritative server returns both
the requested data and its associated RRSIG RRset. A re-
solver that has learned the DNSKEY of the requested zone can
verify the origin authenticity and integrity of the reply data.
To resist replay attacks, each signature carries a definitive
expiration time.

Let Ni define the set of authoritative name servers for
zone zi which are online and reachable. When the zone is
operating correctly, it does not matter which of the servers in
Ni handles a query and the answer can be cached. However,
the design does assume that the resolver can obtain and
authenticate the zone’s DNSKEY.

In order to authenticate the DNSKEY for a given zone, say
www.ucla.edu, the resolver needs to construct a chain of
trust that follows the DNS hierarchy from a trusted root
zone key down to the key of the zone in question (this is
shown in Figure 1). In the ideal case, the public key of the
DNS root zone would be obtained offline in a secure way
and stored at the resolver, so that the resolver can use it
to authenticate the public key of edu.; the public key of
edu. would then be used to authenticate the public key of
ucla.edu..

There are two challenges in building the chain of trust.
First, a parent zone must encode the authentication of each
of its child zone’s public keys in the DNS. To accomplish this,
the parent zone creates and signs a Delegation Signer (DS)
RR that corresponds to a DNSKEY RR at the child zone, and



Symbol Description

r A resource record
k A DNSKEY
sk An RRSIG (verifiable by k)
R An RRset defined as

(r0, · · · , ri, s0, · · · , sj)
Rs A secure R with one or more sk

K A DNSKEY RRset defined as

(k0, · · · , ki, s
k0
0 , · · · , skl

j )

T a A k trust anchor
z A secure zone defined as

(Rs
0, · · · , Rs

i , K)
Ni The set of online nameservers

for a zone zi

Zs The set of all secure zones

Table 1: Definition of terms

creates an authentication link from the parent to child. It is
the child zone’s responsibility to request an update to the DS
RR every time the child’s DNSKEY changes. Although all the
above procedures seem simple and straightforward, one must
keep in mind that they are performed manually, and people
inevitably make errors, especially when handling large zones
that have hundreds or thousands of children zones.

Moreover, the parent and child zones belong to different
administrative authorities, each may decide independently is
and when they turn on DNSSEC. This leads to the second
and more problematic challenge. If the parent zone is not
signed, there is no chain of trust leading to the child zone’s
DNSKEY. This orphaned key effectively becomes an isolated
trust anchor for its subtree in the DNS hierarchy. To verify
the data in these isolated DNSSEC zones, one has to obtain
the keys for such isolated trust anchors offline in a secure
manner. DNSSEC resolvers maintain a set of well-known
“trust-anchor” keys (T a) so that a chain of key sets + sig-
natures (secure delegation chain) can be traced from some
T a to a DNSSEC key K lower in the tree. The original
DNSSEC design envisioned that the its deployment would
be rolled out in a top-down manner. Thus only the root
zone’s K would need to be configured in all resolvers’ T a

sets and all secure delegations would follow the existing DNS
hierarchy. However without the root and top level domains
deploying DNSSEC (as is the case today) there could be po-
tentially millions of isolated trust anchors. In fact various
approaches have been proposed for securely obtaining these
trust anchors.

Secure Resolution Procedure: For illustrative pur-
poses, Algorithm 1 describes the verification process DNS-
SEC resolvers follow when contacting and querying zones
for DNSSEC data. Table 1 summarizes the notations used
in describing a secure zone.

3. MONITORING AND MEASUREMENT
Although the DNSSEC deployment is still in its early

stages, our measurement results have already revealed some
key challenges that face Internet cryptographic systems. Our
DNSSEC monitoring project has been operating since major
DNSSEC deployment efforts began over 2 years ago. During
that time, the number of monitored zones has grown from
tens to several thousand. While this is a small fraction of
the World’s DNS zones, our set continues to grow rapidly.

Algorithm 1: Resolution algorithm for DNSSEC

Data: Given Ni

Input: Query (Q) for “www.foo.bar” from foo.bar (zi)

begin
if get Ki from Ni then

if able to trace chain from known T a then
send Q to one of Ni

if ∃ Rs ∈ zi such that Q ∈ Rs AND verify
signatures in Rs against Ki then

Data is verified
else

Unable to verify data

else
Key cannot be verified as zi’s

else
No data for zi can be verified

end

Despite the relatively small size of DNSSEC’s initial roll-
out, it is quite complex and scaling the monitoring is already
a major concern. The number of records in a zone can vary
from tens to millions and each DNS zone is served by several
authoritative servers. Thus, even a single zone is, essentially,
a distributed view of a dataset. This fact raises interesting
questions about what to monitor and how to quantify the
results in a way that provides both insight to general trends
and an ability to analyze specific issues.

In addition to the distributed nature of a zone, the view
of its data also varies depending on the location that it is
monitored from. In the simplest case, connectivity issues
may prevent some monitoring points (called pollers) from
reaching a zone’s servers. Although one may assume that
connectivity problems are rare, middleboxes (such as fire-
walls, NATs, or proxies) are pervasive today. Such middle-
boxes along the paths between pollers and the authoritative
servers, and other qualities of the path itself, can dramati-
cally change the view of a zone. Our data analysis in later
sections will illustrate the impact of middleboxes; for the
moment it suffices to say that the location of monitoring
is an important factor. During the course of deploying our
monitoring system, our set of pollers has expanded from a
single poller to a collection of distributed pollers in differ-
ent continents, and this has offered fundamentally different
views of some DNSSEC datasets.

Our monitoring system gathers a vast volume of data on
DNSSEC resource record sets (RRsets) as viewed from dif-
ferent locations over different times. The detailed data is
publicly available and it allows people to investigate specific
questions such as “was RRset X available from pollers in
Asia on January 31, 2008?” But the vast volume of raw
data provides little insight into how the overall system is
performing. The situation is analogous to monitoring BGP
routing, another Internet-scale system. BGP monitoring
projects such as Oregon RouteViews [14] provide invaluable
raw data containing millions (if not billions) of BGP up-
dates. Hidden in this data are important lessons about the
overall system behavior, but simply looking at raw BGP up-
date logs does not directly answer the question of how well
BGP is performing. Similarly, simply presenting millions of
DNS RRset query results does not directly answer the ques-



tion of how well DNSSEC is performing, how effective it may
be in providing cryptographic protections for the DNSSEC-
enabled zones, and more importantly, how these measures
may be changing over time.

In order to gain a quantitative assessment of DNSSEC as a
whole, we derived the following three measurement metrics:

• Availability: This measures whether the system can
provide all the data to the end-systems requesting it.

• Verifiability: This measures whether the end-system
can cryptographically verify the data it receives.

• Validity: This measures whether the verified data is
actually valid. Note that in an actual deployments,
it does not necessarily follow that all verified data is
indeed valid.

In the following three subsections, we describe each met-
ric in detail and present our approach for quantifying the
results.

3.1 Availability
Intuitively, one would like to know whether a secure zone

is “available.” This is an important 2-way street because
zone operators need to be aware of any problems resolvers
may have in receiving their data, and resolvers would like
to know why they may be unable to get certain data from a
zone. However, before one can know if a zone is “available,”
one must define what that means. Thus, we define a mea-
sure that captures the intuitive notion of availability, but in
quantifiable metric. In Section 4, we show how this metric is
effective in quantifying DNSSEC’s non-uniformity. Such a
quantification should facilitate an empirical way to measure
improvements in DNSSEC’s deployment.

Selecting RRsets and Nameservers: A secure zone
is comprised of a set of RRsets. The number of these sets
in a zone can range from fewer than ten to over tens of mil-
lions, but the DNSKEY set (key-set) plays an special role
in DNSSEC. The key-set holds the zone’s public key(s), and
by definition, every secure zone must contain an instance of
this set at its apex. The keys in the key-set are required to
verify other RRsets and are also needed to verify authenti-
cation chains to descendant zones in the DNSSEC hierarchy
(Figure 1). Without getting the key-set, even if a resolver
can obtain other RRsets, it cannot verify them. We thus ar-
gue that for the purpose of DNSSEC, zone availability can
be reasonably represented by the availability of the key-set
itself.

Having identified a specific set to monitor, we next con-
sider which of the many authoritative servers of a zone to
query. Work in [17] has shown that, due to various configu-
ration errors, different servers of the same zone may exhibit
different behaviors. For example, some may be listed as
authoritative but actually fail to answer queries, and some
other servers may be authoritative but unreachable. In this
paper we focuses on whether a zone’s key-set is available via
any authoritative server1.

Availability Metric: Given a set of pollers (P ) who
send queries at a set of given polling times (T ), we denote
the availability of zone zj from poller pi at time t ∈ T as

1Our monitoring system is able to detect the problems re-
ported in [17]. However, this is beyond the scope of this
paper.

A(pi, zj , t). In this paper, A(pi, zj , t) is either 1 to indicate
the poller was able to obtain zj ’s key-set (Kj), or 0 to indi-
cating it could not be retrieved. For example, A(p1, z1, t) is
set to 1 if poller p1 could obtain K1 from zone z1 at time t.
Similarly A(p2, z1, t) is set to 0 if poller p2 could not obtain
the K1 from zone z1 at time t.

This metric is designed to allow a more nuanced defini-
tion of availability in which the value can vary between 0
and 1. For example, one might include representations for
nameserver availability, a combination of multiple RRsets,
the agreement ratio between a zone’s nameservers, or other
facets. However in this paper, a simple definition of avail-
ability suffices and we set the value of A(pi, zj , t) to either
1 (Kj obtained) or 0 (Kj not obtained).

Having defined zone availability for a particular poller at
a particular time t, we combine the results from multiple
pollers to obtain a single for the zone availability at time t.
Let Amax(zj , t) = maxi=0,|P |A(pi, zj , t) denote the highest
availability metric obtained for any poller. This value rep-
resents the best observed view of availability for this zone
at this time. We say a zone zj is available at time t iff
Amax(zj , t) > 0. Our later results show that a vast majority
of DNSSEC zones were “available” during polling times ∈ T .

Availability Dispersion Metric: While the above def-
inition of availability focuses on whether some resolver (rep-
resented by pi) can reach a zone, we are also interested in
describing how many resolvers can reach the zone. Our later
results show that in many cases, even though some resolvers
can reach a zone, others cannot. If a zone is available, the
variance in availability is quantified as availability disper-
sion. More precisely, we denote the zone zj ’s availability
dispersion at time t as:

disp(zj , t) =

P|P |
i=0 Amax(zj , t)−A(pi, zj , t)

|P |
The intuition for the dispersion metric first considers the

zone’s Amax(zj , t). All other pollers are compared against
this best case and pollers with lower availability increases the
dispersion. For example, if all pollers see a zone as available
the dispersion will be 0. Furthermore, if we take the limit as
the number of polling locations approaches the total number
of resolvers on the Internet, we can see that the availability
dispersion approaches the mean behavior for resolvers.

There is a clear difference between the polling failures that
stem from persistent availability issues and those that repre-
sent transient network problems. The availability dispersion
metric is designed to address the former (persistent prob-
lems). In the case of the latter (transient problems), the
timeout/retry strategy of the monitoring apparatus is use-
ful in attempting to overcome failures. The specific time-
out/retry strategy used is described in more detail in Sec-
tion 4.

Recall our metric is designed for A(pi, zj , t) values that
range between 0 and 1, but this paper considers only values
of 0 and 1 and thus disp() can be simplified. Since dis-
persion is only calculated if at least one poller can reach
the zone (Amax(zj , t) = 1), any other poller that can reach
the zone will not contribute to the numerator in dispersion
(Amax(zj , t)−A(pi, zj , t) = 0), but A(pi, zj , t) = 0 will con-
tribute 1 to the numerator (Amax(zj , t) − A(pi, zj , t) = 1).
Therefore, our dispersion calculation simplifies to the aver-
age number of failed pollers.



Next, we take the instantaneous metrics and apply an Ex-
ponentially Weighted Moving Average (EWMA) to obtain:

disp(zj) = (α× disp(zj))×
“
(1− α)× disp(́zj)

”

EWMA incorporates the history of dispersion without over-
penalizing zones who are normally available but were not at
the time of a recent poll and without being overly charita-
ble to zones that are normally unavailable, but who were
available at the time of the last poll. Thus, while the time-
out/retry strategy helps to overcome some transient prob-
lems, the actual dispersion metric also reduces their effect
(if they are indeed only transient).

Because high-dispersion indicates potential problems, while
low or no dispersion represents that the effect on availability
is uniform, we take the complement of the average availabil-
ity dispersion to reflect the Internet’s effect on availability:

availdisp(zj) =
`
1− disp(zj)

´

3.2 Verifiability
The previous section presented a metric for assessing the

availability of DNSKEY RRsets (key-sets) and by extension
the zones that serve them. But simply accepting key-sets
without any verification defeats the underlying purpose of
adding cryptography. DNSSEC was introduced because re-
solvers may receive incorrect responses caused by uninten-
tional errors or intentional attacks. Even using key-sets can
leave a resolver vulnerable if a man-in-the-middle attack al-
lows an adversary to give a resolver a bad key [8, 16]. Thus a,
resolver must be able to verify key-sets and this section intro-
duces a metric that captures the intuitive notion of whether
this can be done.

To verify any data, a resolver must be configured with
some initial set of keys from trusted zones, referred to as
trust anchors. Figure 1 illustrates this process.

If all zones were secure and each secure zone coordinated
with its parent in the DNS tree, then resolvers would only
need to be configured with a single trust anchor, correspond-
ing to the root public key. However, not all zones are secure
and not all secure zones coordinate with their parents in the
DNS tree. The result is that there are gaps in the authen-
tication chain and these gaps must be bridged by adding
additional trust anchors. In the worst case, there could be
no authentication chains and a resolver would need to be
configured with a trust anchor corresponding to each zone
(which would be tens of millions for a full deployment). In
the ideal case, resolvers are configured with a single trust
anchor. To quantify where the current deployment stands,
we introduce a verifiability metric that captures the amount
of configuration needed to verify key-sets.

Verifiability Metric: Let T a denote a trust anchor. We
say the key-set (Ki) for zone zi is covered by trust anchor
T a iff there is an authentication chain leading from T a to
zi. If |Zs| denotes the number of total secure zones and |T a|
is the minimum number of trust anchors needed to cover
all secure zones then we say the overall verifiability of the
system is:

V f = 1− |T a|− 1
|Zs|

The intuition for this expression comes from DNSSEC’s

Verified Unverified
Valid Ideal Behavior False Negative

Invalid False Positive Intended Defense

Table 2: Verification vs validity matrix.

goal of a single trust anchor. Thus, the expression accepts
a single trust anchor as optimal (hence the −1 term), and
penalizes all instances above 1. Note that if no authentica-
tion chains had been established between any secure zones,
a resolver would need to configure Ki for each zone zi ∈ Zs

as a trust anchor, and V f → 0. If DNSSEC is deployed in a
contiguous region of the DNS tree and all zones in this re-
gion establish authentication chains with their direct parent,
then we will only need a single T a and V f → 1.

3.3 Validity
The previous sections considered whether zones’ critical

DNSKEY RRsets (key-sets) were available to resolvers and
how much configuration was needed to verify these key-sets.
This section considers whether data is actually valid and
illustrates that there are key differences between verified
data and valid data. More specifically, verification refers
the cryptographic process in which a data unit is either ver-
ified or not. Validity, on the other hand, refers to whether
the data actually corresponds to what the zone administra-
tor intended (ground truth) and a data unit is either valid
or invalid. Based on the overlapping intents of verification
and validity there are four possible combinations, which are
shown in Table 2. Our validity metric (V d) focuses on the
validity of DNSSEC data.

Ideally, data obtained by a resolver is both valid and ver-
ified (upper left box in Table 2). For example, if a zone
administrator correctly enters and signs zone data, then a
resolver should be able to obtain and verify this valid data.
DNSSEC adds cryptographic checks in the hope of detecting
invalid data by using cryptography alone (lower right box in
Table 2). For example, if someone modifies data in flight
(after being signed), then the old values become invalid and
one expects that the signature verification will fail. This
is the intended behavior of DNSSEC but both operational
errors and successful attacks can cause this to fail.

False Negatives: The case of false negatives (upper right
box in Table 2) occur when a resolver gets data that is ac-
tually valid, but is unable to verify it. The most trivial
case of this is when a resolver receives plain DNS responses,
but finds that there are no signatures attached. This, for
example, was observed during the early DNSSEC develop-
ment. Some sites could not obtain signed data from se-
cure zones even though the server correctly attached the
signatures. This problem was caused by intervening fire-
walls that blocked any response that contained signatures.
From the firewall’s perspective: the resolver had made a sim-
ple request but the response also included the signatures.
To the well intentioned firewall, these unknown signature
records were clearly some sort of attack and the responses
were dropped. Answers that did not include signatures were
passed through, but could not be verified by the resolver.

Another important example of false negatives can occur
when a zone unintentionally breaks its own secure delegation
from its parent. This can happen if a zone creates a new key
pair and re-signs all RRsets with the new key before updat-



ing the authentication chain with the parent. Specifically,
this is when the child zone updates its key-set, but the par-
ent has yet to update the corresponding delegation (DS)
record(s). From the perspective of the parent zone and re-
solvers, the authentication chain points to the previous key
but all signatures have been produced by the new key. This
scenario arises due to the difficulty in coordinating opera-
tional practices (key rollovers) across administrative bound-
aries. Based on the anticipation of this particular scenario
we track it as follows.

Let |RDS | denote the total number of unique DS records
seen by pollers and let |RDS

v | denote the number of verified
DS records that match key-sets in the corresponding child
zone. The ratio between these values reflects the validity of
authentication chains, or delegation validity:

Vdeleg =
|RDS

v |
|RDS |

Ideally, every delegation record would verify a key-set of
a corresponding child and Vdeleg → 1. Lack of verification
indicates that: the child has removed a key-set too quickly
and has broken the authentication chain, or that the parent
has been slow in removing on obsolete delegation record,
or the parent has added a new delegation record before the
child was ready. Thus, a ratio value of less than one indicates
that there are zones that have broken delegations leading to
their child zones.

False Positives: In addition to the configuration errors
described above, False Positives (lower left box in Table 2)
can also occur. To illustrate this we draw an analogy from
BGP and then show a DNSSEC-specific example.

In BGP there is an infrequent occurrence of routing leak-
outs [11]. In these cases, an Autonomous System (AS) acci-
dentally announce routes to peers that it really can’t reach.
Here the routers have sent routing announcement data (and
often use MD5 checksums to make it verifiable), but the data
is false. Even though the MD5 sums on these data streams
are verifiable, the data is not valid. In DNSSEC, an attacker
that has compromised a zone’s private key can generate and
sign records that appear to come from the zone. These
records are invalid (e.g. a record may contain the wrong
IP address of a web server [18]). However, these records
will still pass cryptographic verification checks. This type of
compromise and other security breaches are hopefully rare,
but administrative errors are inevitable in large scale de-
ployments.

We show evidence in Section 4 that operational practices
combined with lack of revocation in the DNSSEC design al-
low a weak form of false positives to occur where an attacker
can replay stale RRsets long after the RRsets have been re-
moved from the zone’s authoritative servers (and have been
flushed from caches).

An RRset is stale if an administrator has changed data
values in new sets, but a signature covering the previous
values has not expired. In this case, the stale set could be
replayed by an attacker or malfunctioning cache. Figure 2
illustrates this scenario. At time t0, RRset 1 is created and
signed. The signature includes an expiration date of time
t2 (indicated by the bottom bar). At time t1, RRset 1’s
value is modified. For example, the IP address of a host
may have changed. The modified RRset is distributed to all
authoritative servers and the previous value is flushed from
caches after the TTL expires. However, an attacker can
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Figure 2: If data changes, such as in “Modified RRset 1”,

then the old RRset 1 will still be verified by the zone’s keys

(even though the data is no longer valid).

continue to replay the old record until the signature expires
at time t2. Resolvers that receive the stale (blue) RRset will
verify the signatures and declare that the set is valid.

Our monitoring system is able to automatically detect
stale RRsets by tracking zones over time. We let Rv de-
note the set of RRsets whose signatures have not expired
and are still verifiable. Thus, Rv includes sets that are cur-
rently served by a zone and older sets whose signatures have
not expired yet. We denote the number of RRsets in Rv

as |Rv|. We now define Rstale such that Rstale ∈ Rv and
the sets in Rstale have different values than those currently
being served (as seen in Figure 2). We say that |Rstale| is
the number of RRsets in Rstale. We pay close attention to
these sets because they could be replayed by an attacker.
The ratio of these two values yields the proportion of stale
data that is observed, or the data freshness:

Vfresh = 1− |Rstale|
|Rv|

A value of 1 indicates that no obsolete RRsets could be
replayed while a value less than 1 indicates that a fraction of
verifiable RRsets could be replayed and would allow invalid
data to be verified.

Note that in the case of a stale RRset, the attacker is only
replaying data that was previously valid. In many cases, this
type of vulnerability will raise little or no concern. However,
one problematic scenario occurs when an attacker has com-
promised a zone’s private key and the zone attempts an un-
planned key rollover. At such a time, an attacker can replay
the stale key-set in order to verify (but not validate) the
compromised key. Using the compromised key, the attacker
can then forge arbitrary data from the zone. Some authen-
tication chains have lifetimes of weeks, months, and in some
cases years. Thus, key compromises combined with stale
RRset-replays pose serious challenges. A complete discus-
sion of the vulnerabilities and possible mitigations is beyond
the scope of this paper, but can be found in [16, 8].

We, thus, characterize the validity metric (V d) of DNSSEC
as an n-dimensional tuple of measurable validity metrics.
Other types of validity dimensions are plausible and worth
investigation, but in this work we use our experience to iden-
tify 2 operationally relevant dimensions to characterize:

V d = 〈Vdeleg, Vfresh〉

Our selection of these 2 dimensions is based on obser-
vational evidence that they are existing problems and that
there is also awareness of them in the operational commu-
nity.



Figure 3: Polling locations

4. DEPLOYMENT STATUS TODAY
DNSSEC deployment data was collected using the Sec-

Spider monitoring project [3]. The revised DNSSEC RFCs
[4, 6, 5] were published in March 2005, and our monitoring
project began shortly afterward in October 2005. The mon-
itoring project uses a collection of pollers that send DNS
queries to the authoritative name servers of zones and use
the DNS responses to form the raw data for this study. The
polling locations are located in the United States, Europe,
and Asia, and on networks comprised of universities, home
access, and enterprises (Figure 3). This monitoring system
uses a central server to control the pollers and schedule when
queries should be sent and where to send them. All pollers
are scheduled to execute the same queries at approximately
the same time from their individual vantage points. In or-
der to discover new zones, the monitoring system uses zone
transfers (when possible) and exploits DNSSEC behaviors
such as using the NSEC record to “walk” (e.g. definitively
identify and retrieve all records in) a zone. The overall re-
sults provide a detailed history of each secure zone as viewed
from the system’s poller locations.

The dataset discussed covers October 2005 through Jan-
uary 2008 and includes 11,849 secure zones. However, while
this set of secure zones includes many well established DNS
zones such as the se ccTLD, it also includes other secure
zones that are clearly deployed only for testing. An exam-
ple is:
unknownalgorithm.nods.test.jelte.nlnetlabs.nl
In this case, the actual name of the zone indicates that it is
used for testing, and other zones in this same delegation (un-
der test.jelte.nlnetlabs.nl) account for over 81% of all
secure zones. To focus on how DNSSEC deployment is pro-
ceeding in“production”zones, our analysis began by pruning
zones that appeared to be operating in a test-capacity. In
order to classify zones as production we started by includ-
ing all secure TLDs and all secure zones under the arpa
TLD as production zones. Next, we added zones in other
parts of the DNS tree that pointed to an active web server
or mail server as production. Thus, all zones considered in
the study are zones that perform actions that suggest their
operational status is important and taken seriously by op-
erators. Though it can be argued that this test may have
missed some legitimate zones, and may have included some
test zones, it served as an automated way to identify rea-
sonable candidates for measurements. The list of production
zones is also posted on the project website and announced
on DNSSEC deployment mailing lists. Zone administrators
can use a web interface to change a zone’s status from testing
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to production or vice versa. This pruning process reduced
the set of secure zones that were considered in this study
from 11,849 to 871 secure “production” zones.

4.1 Availability
Using the metric described in Section 3.1, we begin our

analysis with data as viewed from our polling locations. At
regular intervals, all pollers query all secure zones. The
polling system described herein is designed to mimic a gen-
eralized DNS resolver, with only minor differences. For in-
stance, the pollers will each issue up to three queries with
timeout thresholds set to a conservative 10 seconds2.

We set Amax(zi, t) = 1 if at least one poller could receive
a response from zone zi at time t. Our results found that
Amax(zi, t) = 1 in 99.925% of our experiments. Out of the
871 zones in our study, only 44 zones ever encountered an
instance where Amax(zi, t) = 0. Because our preprocessing
eliminated zones created purely for testing purposes, we the-
orized that the reliability of the remaining zones would be
high due to the fact that they run production services and
their outages would not be significant. Our results appear
to confirm this. However, even though these zones are only
considered when they were reachable, different pollers can
have very different views of zone availability. Specifically,
when requesting zone data, resolvers in some locations re-
ceive no answer, while others (at the same time, but from
different locations) have no difficulty obtaining a response.
The availability dispersion metric described in the previous
section captures this difference between pollers. Figure 4
shows that roughly 20% of the monitored zones suffer avail-
ability dispersion. This means that some resolvers may not
be able to receive critical data from a zone based solely on
where they query from.

The reason why this dispersion exists was traced to Path
Maximum Transmission Unit (PMTU [12]) problems. Recall
each link along the path from poller to authoritative server
has a Maximum Transmission Unit (MTU) that is the largest
packet size it can support. The PMTU is the smallest MTU
along a path. DNSSEC response messages can include pub-
lic keys (DNSKEYs) and signatures (RRSIGS) which make

2One popular DNS tool (DiG) uses 3 retries with a default
timeout of 5 seconds.



them considerably larger than a typical DNS response. As
these responses travel along a path from the authoritative
server to the resolver, these larger UDP packets may exceed
the path’s maximum transmission unit (PMTU). As a result
packets may be fragmented or dropped. In one specific case,
the IP layer had fragmented the DNSSEC response mes-
sages and a local firewall was configured to disallow frag-
mented DNS packets. As result, the poller never received
the responses.

To better understand the impact of response packet size,
we modified our pollers to send queries with varying maxi-
mum response sizes. A DNSSEC query specifies a maximum
response size that the resolver can support. The recom-
mended maximum response size is 4096 bytes and is set by
default. If the query received no response, our pollers used
a binary search to find the smallest maximum response size
that would elicit a response. We call the process of sending
queries with varying maximum response size PMTU explo-
ration. During a PMTU exploration, problems manifested
themselves in one of two ways: either zone data was received
with a truncation bit (TC) set3, or the message was com-
pletely dropped (causing pollers to timeout). When data
was received, the PMTU exploration was characterized as,
“successful,” otherwise it was considered to have “failed.”

Figure 5 shows that while most pollers were able to re-
trieve zone data without encountering PMTU failures, poller
#2 consistently had more trouble than the others. Figure 5
also indicates that in certain cases, the DNSKEY RRset size
may reduce availability to the point that data is unavail-
able (via UDP) even after PMTU explorations. Figure 6
shows that certain pollers have significantly more trouble
successfully getting data when a PMTU problem has been
encountered. One can note that poller #2 attempts more
than 7 times the number of PMTU explorations of any other
poller, and that over 20% of the PMTU problems result in
data that could not be retrieved via UDP (no matter what
size packet is specified).

A small set of zones suffer uniform PMTU exploration
problems across all pollers. We conjecture that the link with
the MTU problem happens to be close to their source (per-
haps the first hop).

It is important to note that modern DNS and DNSSEC
resolvers are encouraged by RFCs to initially request data
using UDP. If a failure (i.e. no response) occurs resolvers
will generally give up. Thus, a PMTU failure may not even
prompt a resolver to try TCP. However, if a TC bit is re-
ceived, resolvers may try smaller message sizes (PMTU ex-
ploration) or retry their query using TCP. Our results indi-
cate that TCP is a reliable fall-back mechanism. However,
we also note various opinions in the operational commu-
nity decry TCP for DNS [1] and some locations may disal-
low TCP queries and/or the TCP query behavior may raise
other problems.

Compounding the PMTU problem faced by DNSSEC is
the fact that some network-infrastructure components as-
sume DNS traffic will not diverge from a very vanilla speci-
fication. Components such as firewalls may detect DNSSEC
messages as malformed DNS messages and drop them, fear-
ing that they may be dangerous. Examples of firewall com-
patibility issues include Cisco’s PIX firewall before version
6.0. In addition, [2] is a broad examination of several types of

3The TC bit indicates that the server wants to send more
data but it won’t fit in the existing message.
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home firewall/routers that found a significant proportion of
these devices simply failed to process DNSSEC properly and
led some zone operators to discontinue the use of DNSSEC.

4.2 Verification
DNSSEC envisioned a top-down deployment where au-

thentication chains would lead from the DNS root to most,
if not all, zones. In stark contrast to this vision, the se-
cure hierarchy of DNSSEC today is quite fragmented. Of
the 871 secure zones in our study, fully 662 of these have
no authentication chain leading to them. Ideally, a resolver
would only need to configure one single trust anchor (corre-
sponding to the DNS root) but today a resolver would need
to manually configure 662 trust anchors in order to verify
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all existing signed DNSSEC data. Today, manually config-
uring 662 trust anchors and updating these trust anchors is
tedious at best, but this clearly becomes infeasible as the
number of secure zones moves from hundreds to millions.

A resolver may choose to only configure some of the 662
trust anchors and Figure 7 shows the percentage of secure
zones that can be verified if the resolver configures trust
anchors in a greedy manner. A resolver that configures the
top 10 trust anchors can verify data in 25% of the secure
zones. This is because a small number of zones participate
in authentication chains. By configuring the trust anchor for
some zone zj , a resolver may also be able to verify data from
other secure descendants of zj . Unfortunately most zones
are not part of an authentication chain and configuring the
trust anchor for zi allows the resolver to verify data from
only zi.

It is also important to note that configuring a trust anchor
is not a one-time operation. Whenever a key-set that exists
in a trust anchor list is changed, the trust anchor list must
be updated. The churn in large trust anchor lists increases
operational and configuration overhead.

Our verification metric from the previous section captures
the added configuration challenge. There are currently 662
trust anchors for 871 zones resulting in:

V f = 1− 662− 1
871

= 0.241

In an ideal deployment, there would be a single trust an-
chor and we would have a score V f = 1. Earlier monitoring
results seemed to suggest that V f was improving over time
and some longer authentication chains were formed. But un-
fortunately this improvement in V f proved to be an artifact
of testing. Several large collections of test zones were de-
ployed and connected via authentication chains. These test
zones help operators experiment with managing authentica-
tion chains, but don’t reflect production use and many of
these test configurations are operated by a single organiza-
tion, so true large scale inter-administration testing is still
needed.

After removing the test zones, there has been little mean-
ingful change in the V f value. For example, in October

 0

 10

 20

 30

 40

 50

 60

 70

se.
8.d....arpa.

har...s.net.
zx.com.

nln...bs.nl.
176....arpa.

20.....arpa.

Si
ze

Island Rank

Size of Island vs. # of separate Administrative Domains

Size of Island
Independent Admin Domains

Figure 8: This Figure shows the rank order of the largest

observed Islands of security. The bars indicate that many of

the zones in these islands are served by the same nameservers.

10th, 2007 V f = 1 − 634−1
815 = 0.223. On the positive side,

a number of ccTLDs (notably se, bg, br, pr) have deployed
DNSSEC and could be potentially become trust anchors for
large numbers of zones.

We define an island of security as a zone z and all se-
cure descendants of z that can be reached by authentica-
tion chain starting at z. Thus the size of an island is the
number of secure zones in the island4. A single zone that
deploys DNSSEC but does not coordinate authentication
chains with its parent or any of its children forms an island
of size 1. Today there are 662 distinct islands of security in
our study and 97.4% of them have size 1.

Figure 8 shows the current size of the largest islands. In
addition to island size, the number of distinct administra-
tive domains within the island is also important. We believe
Internet cryptographic systems are interesting due to both
their large size and their large number of independent ad-
ministrative authorities. For example, an island of security
that includes 60 zones operated by 60 different organizations
requires coordinating authentication chains across different
organization boundaries and, in our view, is more interesting
than an island operated by a single administrative domain.

To infer whether an island includes multiple administra-
tive domains, we analyzed the number of unique sets of
nameservers serving the zones in each island. If two zones
are served by the same set of name servers, we assume these
zones are operated by the same administrative domain. Fig-
ure 8 shows that among the largest observable islands, many
still consist of a relatively small number of administrative
domains. The largest island of security includes over 60 se-
cure zones, but only 1 administrative domain.

Reducing the number of required trust anchors and cre-
ating large diverse islands of security are perhaps the most
fundamental challenges facing DNSSEC deployment.

4.3 Validity
As discussed in Section 3.3, validity is distinct from verifi-

cation. Due to operator errors, design flaws, implementation

4If DNSSEC were fully deployed, there would be a single
island of security with the root zone as its trust anchor and
its size would be the total number of DNS zones.



bugs, or intentional attacks, invalid data may be verified by a
resolver (false positives). Similarly, valid data may fail a ver-
ification check (false negatives). Although, our monitoring
did not detect intentional attacks, the lack of active attacks
was not surprising given the current state of deployment.
Instead, our results focus on two areas where operational
practices lead to false negatives via broken authentication
chains and false positives where stale data can be replayed.

False Negatives: In order to authenticate zone data, a
resolver must be able to obtain the zone’s public key. The
discussion above shows most of these public keys need to be
manually configured as trust anchors. For the other public
keys that can be reached via authentication chains, we con-
sider how well these authentication chains are maintained.
In particular, a secure delegation (DS) record stored at the
parent zone must match a DNSKEY stored at the child zone.
As of January 17th, 2008, our pollers had observed 1,730 DS
records and 1,573 of these records matched DNSKEYs in the
child.

Vdeleg =
1, 573
1, 730

= 0.909

If a zone stores only one DS record for a child, and this DS
record fails to match a DNSKEY, then the authentication
chain is broken. There is no way for a resolver to verify
the child zone’s public key. The results above suggest that
9% of the authentication chains observed by our poller were
broken and data verification would have failed for all data
in the affected child zone and all its descendents.

On the other hand, if there are multiple DS records for
a child stored at the parent, it may be the case that one
authentication chain works and the other broken DS records
are simply old data that the parent has been slow to remove.
However, DNSSEC envisioned that a parent zone would have
exactly one DS record for each child. Even during a key roll
over (e.g. when the child zone changes its DNSKEY), there
is still exactly one DS record at the parent at all times.
This is accomplished by having multiple DNSKEY records
at the child and rollover procedures are described in detail
in [10]. During our study 175 zones always had exactly one
DS record at the parent and 75 zones had multiple records
at the parent.

False Positives: While we did not observe any active at-
tacks against secure zones, we did observe operational prac-
tices that would allow a misconfigured cache or attacker to
replay stale data. Our analysis was focused on infrastructure
records used by resolvers to navigate the DNS tree hierarchy.
Specifically, we considered whether an attacker or miscon-
figured cache might be able to replay stale DNSKEY, DS,
SOA, NS, and associated A RRsets.

Due to the potential impact of replaying these records,
we tracked changes in them and determined whether the
stale value could be replayed as described in Section 3.3.
Figure 9 breaks the set of secure zones into buckets based
on the number of stale RRsets that were associated with
the zone. Each zone is quantized based on whether is has
0, 1-10, 11-100, or more than 100 stale RRsets on each day.
The results show that for some time, zones tended to have
quite a few stale sets associated with them. The graphs
show that in December 2006 there were 10 zones with over
100 stale infrastructure records that could be intentionally
or unintentionally replayed.

This is primarily caused by zones selecting long signature
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lifetimes. For example if a DS record is signed using a one
year signature lifetime and changes only a few days later, the
stale DS record can be replayed until the year long signature
expires. Since DNSSEC includes no revocation mechanism,
selecting long signature lifetimes creates a long period where
stale data may be replayed and verified by unsuspecting re-
solvers.

Early in 2007, the zones with more than 100 Rstale began
to decline in number. In fact, currently, there are no more
than a few zones that have more than 100 stale RRsets.
This decline roughly corresponded in time with stale data
monitoring results being available on our monitoring site
and appearing on deployment mailing lists.

Based on the characterization in Section 3.3 we represent
the state of DNSSEC from January 17th, 2008 as:

Vfresh = 1− 4, 418
22, 329

= 0.802

The longitudinal evaluation of the Vdeleg dimension, above,
shows improvement when contrasted with Vfresh from Oc-
tober 10th, 2007: Vfresh = 1 − 14,476

27,196 = 0.468. Here we see
an evident trend.

Overall, this calculates the validity as of October 10th,
2007, and then on January 17th, 2008 as a tuple:

〈0.893, 0.468〉 → 〈0.909, 0.802〉
The merit of these absolute values is subject to debate.

However, we present their relative values as systematic met-
rics that capture certain deployment specifics. In this re-
gard, we note that there is a dramatic increase in fresh-
ness of DNSSEC’s validity. A qualitative interpretation of
this would indicate that significantly fewer chances exist
for resolvers to encounter stale, or misconfigured data in
DNSSEC.

5. DISCUSSION AND CONCLUSIONS
Over a few years of monitoring, we have collected a vast

amount of data on DNSSEC’s deployment. Our goals have
consistently been to help inform operational practices with
actual data. For example, the timing of our discovery and



dissemination of RRset staleness coincided with a large drop
in its incidence. We posit that some operational groups be-
came aware of the implications of rapid re-signing of their
zones and adjusted this behavior. These simple changes help
improve the overall DNSSEC system and demonstrate the
value of distributed monitoring.

More generally, we have presented a set of metrics that
quantify the DNSSEC deployment in ways that proved quite
useful. These metrics have allowed us to collapse massive
volumes of data into a few simple quantifiable values whose
results helped shape further analysis and forensics surround-
ing operational failure modes. Our use of these metrics has
revealed 3 fundamental challenges: First, data in Internet
systems is not always universally available. Issues such as
PMTU limitations, transient failures, and misconfigurations
are a fact of life for these systems. Using our availability
metric as an indicator, we have gauged the severity of this
PMTU problem and can now design solutions.

Second, our verifiability metric clearly illustrates a fun-
damental challenge facing all cryptographic deployments in
the Internet; how does one obtain the the trust anchor in-
formation (e.g. its public key) in a secure, verified, and
robust way? DNSSEC directly addressed this problem by
designing a hierarchical PKI which minimizes the neces-
sary trust anchor to one, however its design assumptions
are not congruent with the common requirement that ev-
ery party in the Internet tends to make their own decision
about whether/when they may deploy new functions. From
the facts that the Internet does not have a central author-
ity and that not everyone trusts the same parties, one may
conjecture that there may necessarily be multiple trust an-
chors, making the problem more difficult. How best to solve
this cryptographic bootstrapping problem remains a critical
open question.

The DNSSEC community has taken notice of some of the
problems discussed herein and is exploring “look-aside val-
idation” (DLVs [20]) where some central site or sites verify
many public keys and become de facto authorities. We are
also working on a novel solution that uses our monitoring
apparatus as a diverse lookup infrastructure that can look
for DNSKEY consistency and provide a repository of DNSKEYs
which, although not cryptographically verified, form a con-
sistent view from multiple diverse locations and whose cor-
rectness can be double-checked by individual key owners.

Finally, even early deployment shows DNSSEC is a highly
dynamic and a continuously evolving system. Thus, its be-
haviors must be continuously monitored to capture new fail-
ures and challenges. By measuring one gets data and that
can inform a system’s design, by quantifying data one can
decipher its meaning and gauge the progress, and by mon-
itoring one is able discover problems as they arise so that
designs can be revisited.
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