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Abstract 

 
A clustering-based technique is proposed for 
production line testing and real time binning of ICs. 
This paper presents a two-phase approach. The first 
phase involves off-line clustering and cluster 
characterization based on prior data.   In the second 
phase, each device is sorted based on its quality 
attributes, into bins associated with specific quality 
and cost parameters. This allows fast real-time   
sorting of ICs on production line use of IDDQ test 
methodology. Use of clustering algorithm provides a 
high-resolution technique for identifying groups of 
devices with similar characteristics. Proposed 
technique is tested on production test data and results 
are presented. 

1. Introduction 
 

IDDQ testing has been shown to be an efficient and 
practical testing procedure to identify physical defect in 
the devices [1,8,9,12,19]. Research is now being 
pursued to overcome limitations associated with 
threshold setting [2,15,17,20,24]. With the background 
current of devices elevated due to scaling, resolution of 
quiescent currents for defective and good devices has 
decreased. Not all devices with IDDQ higher than the 
normal are necessarily bad. In addition, devices with 
higher operating frequency tend to have higher IDDQ 
[13]. Thus, it is not possible to classify devices just as 
defective or non-defective based on a hard threshold 
value or high current variation. Methods like Current 
Signatures [6,7,16] and ∆IDDQ Testing [18, 23] compare 
the quiescent current values against a threshold limit or 
look for significant variation in quiescent current 
pattern of a device to identify it as defective. Statistical 
Post Processing technique like nearest neighbor 
residual (NNR) reduces variance of good and faulty 

IDDQ distributions by systematic use of die location and 
wafer or lot-level patterns for improved identification 
of die outliers [3,4]. A non-defective device can be 
identified based on the quality and performance 
parameters such as leakage, power and speed. A high-
resolution technique is needed to make such a 
classification that can be a part of the production line. 
By associating a quality and cost factor with each 
classification, the yield can be optimized.  

In this paper, we present a new technique based on 
clustering. This technique will allow the clustering-
based solution of IDDQ test data to be used in production 
line testing. As a result, the device under test (DUT) 
will be sorted and binned based on their analog 
characteristic being used as a parameter for 
classification.  

Clustering techniques have been used for a long 
time in the fields of Image Processing, Pattern 
Recognition and Pattern Matching. Cluster Analysis 
techniques are used wherever data from a large data set 
is to be sorted into smaller groups such that members 
of each group display a high degree of similarity within 
the group. Use of clustering technique for IDDQ testing 
was first suggested in [10,11]. Several benefits were 
observed by this technique for IDDQ testing.  The 
technique was found to be effective in the presence of 
high background current.  It provides an effective way 
of binning devices and cost savings in yield 
improvement.  Savings in time and effort required for 
Failure Analysis (FA) is another significant advantage 
of this technique. The technique was also found 
effective when compared against SEMATECH test 
methods, single threshold approach and delta-IDDQ 
approach.   

The approach was further optimized in [21] which 
proposed criteria for setting the number of clusters 
needed that would give best grouping for maximum 
defect identification. They also provided a test decision 
methodology to assess the quality of the groups formed 



by clustering technique. Introducing the quality factor 
give finer control over the quality of good devices 
obtained from the test and thus affects the yield of the 
testing technique.  The technique is also able to 
overcome certain disadvantages in current signature 
approach [6,7]. The applicability of clustering-based 
solutions in production environment has not been 
investigated yet. This paper further extends the 
clustering technique for use in production line.   

The crux of this new method is to match the analog 
characteristic of the (DUT) with a group of devices 
having similar characteristics.  Based on this similarity 
of parameters, the DUT is binned into corresponding 
group of devices. As a result, we will have various 
bins, each with similar characteristics.  In addition, 
each bin will have a quality and cost factor already 
attached with it.  

Binning has been used previously to study the 
analog attributes related to IC testing and to predict the 
performance of device based on these attributes [14]. In 
addition, clustering applies self-binning to form these 
groups from given test data. Previous studies have 
proposed ways to maximize the test yield based on 
quality factor [10,11,21]. This paper adopts clustering-
based techniques for testing and binning of IC’s in a 
production environment. Proposed technique can 
improve the efficiency of testing. It can also assist in 
identifying suitable devices for reliability and failure 
analysis.  Moreover, it will reduce the overall test time 
while preserving the advantages offered by the 
clustering-based test methods.   

The paper is organized as follows. Section 2 
explains the two clustering algorithm investigated.  The 
new technique is presented in Section 3. Section 4 
presents the results and discussion about the results 
obtained by applying the technique to the production 
data. Section 5 concludes the paper.  

 
2. Clustering algorithms 
 

The final grouping or clusters obtained depends on 
type of clustering algorithm and criterion used to 
identify the groupings from given data set.  The 
criterion can be customized for given application and 
type of data. Generally clustering algorithms can be 
divided into two types: hierarchical and iterative.  

 
2.1. Hierarchical clustering algorithm 
 

Hierarchical clustering is a method to find grouping 
in the data, simultaneously over several scales, by 
creating a cluster tree. The tree is a multi-level 
hierarchy, where clusters at one level are joined to 
form clusters at the next higher level. This process 
continues until we reach the top of the hierarchy. In 

this kind of clustering, we have more control over the 
criterion and method of grouping the data into 
dissimilar groups of similar data sets.   

For the hierarchical algorithm that is used for 
clustering the test data set, ‘Euclidean’ distance 
measure is used and ‘centroid’ algorithm is used for 
clustering the devices into groups. For a data set having 
N data points with each data point having P variables, 
the algorithm initially assumes that there are N groups. 
The data points nearest to each other, based on 
Euclidean distance between these data points, are 
merged to make groups. Every set of data points being 
merged is considered as a single entry represented by 
its centroid. After each merger the centroid of the 
groups are updated before a decision for new entry is 
made.  Thus, hierarchical clustering identifies the 
natural groups within the data set.  

The hierarchical clustering algorithm offers several 
advantages.  The most evident advantage is that the 
algorithm identifies the natural sets of similar data 
points existing in a large data set, as opposed to k-
means which forces k groups irrespective of existence 
of k groups in the data set.  Moreover, the number of 
groups to be formed need not be specified before 
initiating the clustering algorithm.  In addition, 
depending on the type of data and the kind of solution 
required the type of distance measure used and 
algorithm used to form the grouping can be decided.   

 
2.2.  K-means algorithm 

 
Unlike the hierarchical clustering method, k-means 

does not create a tree structure to describe the 
groupings in the data; rather it iteratively creates a 
single level of clusters. K-means clustering can best be 
described as a partitioning method.  

K-means uses an iterative algorithm that minimizes 
the sum of distances from each data point to its cluster 
centroid, over all clusters.  This algorithm starts with K 
initial seed points that can be predefined or randomly 
chosen from the data set.  It then starts adding other 
data points to these groups in such a fashion that the 
average sum of all points of a given group from the 
centroid of that group remains same or decreases by 
this new entry.  In other words, the algorithm moves 
data points between all the clusters until the average 
sum within any cluster cannot be decreased further.  
This iterative process ends, when moving any data 
point from one group to any other group, will not 
decrease the average sum within that group or of the 
group to which this point is being moved to.  The result 
is a set of clusters that are compact and well separated.  

K-means algorithm suffers from some basic 
drawbacks.  By defining, the number of groups (K) 
beforehand,  the algorithm makes an  underlying  

 



 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Phase 1: Cluster Pre-forming 
 
assumption that there already exist K groups in the 
given data, which is not always true for real application 
data. It is also very dependent on starting (initial seeds) 
data points.  Being an iterative method with a 
predefined number of groups, its computational 
complexity increases while solving massive clustering 
problems.  
 
3. Clustering-based IDDQ binning 
 

The technique we propose has two different phases. 
The first phase identifies the clusters and the second  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Phase 2: The Binning Process 
 
phase actually does the binning. While the first part 
will use a sophisticated clustering algorithm, only 
limited computations need to be done during actual 
binning. 
     This paper addresses the second phase in detail. The 
existing scheme, given in [10], is represented here in 
Figure 1 with modifications to accomplish phase 1 of 
proposed technique.  Figure 2 represents the steps in 
phase 2, which corresponds to the functions that are 
carried out during production line testing of DUTs. 

 
3.1. The Two-Phase binning approach 

 
 3.1.1. Cluster pre-forming phase. In this phase, test 
data samples are collected and analyzed 
comprehensively.  An analysis is done using the 
clustering process to obtain the best clusters in the 
collected data.  These clusters are then characterized as 
defective, non-defective, high leakage, low power etc.  
Such a characterization takes into consideration, 
parameters like highest operating frequency, power 
requirement, performance, reliability and cost.  These 
preformed clusters would be based on initial devices 
produced. However, it is also possible to modify these 
using certain desirable or undesirable analog and 
digital attributes.  As this data analysis leads to 
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identification of initial bins that have to be used for the 
next phase and will be responsible for the final yield, it 
is imperative that the clusters be identified and 
characterized very carefully.  Once we get the ideal bin 
characteristics for a particular type of device it can be 
saved for use in future production of lots.   

 
3.1.2.  Binning phase.  From the first phase, we have 
initial bins with their characteristics available.  As each 
IC comes off the production line, it will be assumed to 
the closest cluster.  As soon as the test parameters 
become available for each IC (Figure 2), its 
characteristics are compared with characteristics of all 
the bins and it is assigned to the bin that is the nearest 
match.  Since this process involves simple evaluation 
of distance of the DUT to the existing clusters, it can 
be done in real-time, in a fraction of a second, thus not 
affecting the time and efficiency in a production 
environment.  

Precaution should be taken to perform the binning 
process in the same fashion as the actual clustering 
algorithm being used to form the model bins.  This 
precaution is necessary, as we want to preserve the 
efficiency and accuracy of clustering.  Thus we 
maintain the characterization of the bins and just keep 
sorting the devices according to best match for a bin 
with the aim of optimizing the cost and quality factor 
to get the maximum yield. 

Sections 3.2 and 3.3 explain the binning phase in 
detail for the two clustering algorithms described 
above. 
 
3.2. Hierarchical clustering-based binning 
 

We implement the proposed technique as follows:  
 

1. The hierarchal clustering algorithm is applied 
on the first lot to obtain the initial clusters.   

2. The test vector for the new DUT from the 
second lot is obtained and the Euclidean 
distances between this vector and centroid of 
each group obtained from the first phase is 
calculated. The device is assigned to the group 
to which it is near most.   

3. The centroid of the group to which the device 
is added, is recalculated and updated for that 
group. 

4. This procedure is carried out for all the DUTs 
of the new lot. 

   In step 3, by updating the centroid each time a 
new device is added to that group, the functionality of 
the algorithm is preserved. 

 
 
 

3.3. K-means clustering-based binning 
 

For the k-means clustering, we implement the 
proposed technique in following steps: 

 
1. Initial groups are obtained using the k-means 

algorithm on the first lot.  
2. The data vector for the first device from the 

second lot is obtained and the Euclidean 
distances between this vector and centroid of 
each group obtained from the first phase is 
calculated.  The device is assigned to the 
group to which it is nearest.   

3. To follow the k-means algorithm in this case, 
the average sum of distance of this point and 
each point of that group to the centroid should 
be calculated.  This process will be repeated 
for every group and the device should be 
assigned to the group, which gives the 
minimum average sum.  Clearly, such an 
approach will increase the complexity of 
binning process to a high degree and make it 
unusable in production environment. Thus, 
the next best approximation is followed and 
the device is assigned to whichever groups 
centroid it is closest. 

4. The centroid of the group to which the device 
is added, is recalculated and updated for that 
group. 

5. This procedure is carried out for all the DUTs 
of the new lot. 

     The next section presents the results obtained from 
the two methods described in sections 3.2 and 3.3. 

 
4. Results and discussion 
 

MATLAB (R13) was used as a computation tool for 
all the results and plots presented in this section and 
throughout the paper.  While MATLAB is considerably 
slower than a general-purpose language like C, it 
provides a convenient higher-level platform for 
computation.  
 
4.1. Test data  
 
      The test data being used to confirm the feasibility 
of the proposed technique was collected from a high 
volume device manufactured in deep sub-micron 
process at Texas Instrument [10]. The device has 
approximately 650K gates along with extensive DFT 
features including full scan.  The test vectors were 
generated using commercial ATPG tool.  Thirty IDDQ 
measurements were taken on four lots containing 627, 
724, 716 and 798 devices. We used the first lot for 
cluster pre-forming (phase 1) and lots 2, 3, 4 to 



evaluate the binning process. Fault coverage of 95% 
was obtained with these 30 vectors.  Due to the 
proprietary nature of the data, it is shown in the 
normalized form.  
 
4.2. Silhouette values and plots 
 
Silhouette value is a very useful parameter to assess the 
quality of clusters obtained from any given cluster 
algorithm. Silhouette plots make it easier to visualize 
this quality. The silhouette value for each point is a 
measure of how similar that point is to points in its 
own cluster compared to points in other clusters. It is 
defined as [22]:    

 
where, a(i) is the average distance from the ith point to 
all the other points in its cluster, and b(i) is the average 
distance from the ith point to all the points in the 
nearest neighbor cluster. 

Clearly, the value of S(i) would range from +1 to    
–1.  Greater the value of S(i) in each clusters better is 
the quality of cluster, as higher value of S(i) reflects  
that the points in that cluster are nearer to other points 
in the same cluster than to the points in the nearest 
neighbor to that cluster.   For plotting the silhouette 
plots, all the values of S(i) for every cluster are sorted 
in decreasing order and then plotted. X-Axis represents 
the silhouette values and Y-Axis represents clusters. 
The number of devices in each cluster is mentioned on 
the right side of each plot. 
 
  4.3. Results for hierarchical clustering-based  

   binning 
 

Figure 3 presents the results for first phase using 
hierarchical clustering. This figure represents the 
characteristics of each cluster for all the 30 test vectors.    
There are thus 150 horizontal values (vectors 1 through 
30 of each cluster for five clusters).  These initial 
clusters were obtained from first lot containing 627 
devices. In an industrial setting, the initial clusters may 
be obtained, as a result of the knowledge of design 
parameters, observation over several lots, evaluation of 
such observations based on parameter of interest, 
characterization of clusters based on parameter 
evaluation. The characterization is evaluated as per the 
customer requirement. A high degree of dissimilarity 
can be observed between all the clusters and it can be 
observed that clusters 1 and 3 are nearest neighbors 
while clusters 2 and 4 are nearest neighbors. Due to its 
distinct characteristics, the device in cluster 5 was not 
grouped with any other device.  In addition, cluster 1 
which seems to have devices with low IDDQ current 

vectors is the largest. Due to the lack of details about 
design parameters and exact functionality of this 
device we were not able characterize the clusters.  

One way to assess the quality of clusters is from its 
silhouette plot, Figure 4. Almost all the devices in 
cluster 1 are well correlated to other devices in the 
same group.  The devices of interest for the test 
engineer would be the one displaying negative 
silhouette values (circled in figure 4).  We call these 
devices as weaker members of that cluster.   Due to the 
fact that these 31 devices are not close members to 
their cluster and nor are they assigned to any other 
cluster during the clustering process, they are most 
likely to be misinterpreted as displaying abnormal 
behavior (defective).  This can be explained by looking 
at the mean values of clusters 1 and 3.  Since clusters 1 
and 3 are very close neighbors, these weaker members 
will display higher correlation to devices in 3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Cluster characteristics for all 30-test 
vectors using centroid method 

a) vectors;  b)cluster number; c)number of 
devices in the cluster. 

 
Observing the characteristics of these weaker members 
show that their characteristics are normal (figure 5).  
Device 11 in figure 5 can be considered wrong 
assignment, as its characteristics are similar to devices 
of cluster 2. 

For simulation purposes, we have assumed that 
figure 3 represents the model characteristics.  The 
objective is to extract all the devices that have similar 
characteristics, from other lots too.  The steps 
explained in section 3.2 were followed to bin the 
devices, from other three lots, based on characteristics 
in figure 3.   Figure 6, shows the quality of clusters 
after all the 2238 device from lots 2, 3 and 4 were 
binned using the proposed technique.   Again, the 
majority (2193) of devices were identified with cluster  
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Figure 4. Silhouette plot for clusters from lot 1 

using hierarchical clustering 

 
 

Figure 5. Characteristics of weaker members 
from cluster one 

 
Figure 6. Silhouette plot for clusters obtained      
after binning devices from lots 2,3 and 4 using 

hierarchical clustering 
 
1 and the remaining 45 devices are matched and binned 
with other devices.  Moreover, the number of weaker 
members in the cluster did not increase. Of the total 
2238 devices, none of the device from the other lots 
was a weaker member for cluster 1. Only one device 
from cluster 3 displayed negative silhouette.   

 
Figure 7. Silhouette plot for clusters obtained 

from clustering all the lots together using 
hierarchical clustering 

 
In addition, introducing such a scheme has simplified 
the identification and screening of weaker members, as 
compared to previous approaches in [10,11,21] which 
applied complex techniques like re-clustering.  Also 
binning has improved on accuracy offered by 
clustering technique. Comparing figure 6 with figure 7, 
it is evident that in the former case devices were binned 
accurately in one of the five clusters while for the latter 
case only three clusters were obtained from all the lots. 
If the clustering would have been performed, using the 
traditional technique, low dissimilarity is compromised 
and very close neighbors might merge.  This fact is 
observed in Figure 7, where the devices of all the lots 
are clustered together producing only three clusters. 
 
4.4. Results for k-means clustering-based   

binning   
 

   The analysis was repeated using K-means clustering 
method.  Initial observation of figure 8 would reflect 
more accuracy in cluster identification. This might 
seem to be a better solution, but it suffers the 
drawbacks attached with k-means clustering.  Since k-
means forces k groups to be formed in the given data 
set, some of the defects might be suppressed due to 
merger of doubtful devices with good clusters. One 
evident example can be observed by comparing cluster 
three of figure 8 with cluster five of figure 3. The 
abnormal distribution (circled in figure 8) was included 
with cluster 3 in case of k-means while it was distinctly 
identified using hierarchical technique.  Silhouette 
profile for figure 8 can be observed in figure 9.  
Although k-means algorithm tries to increase the 
cluster-to-cluster dissimilarity, in this case it is 
observed that due to very low dissimilarity in the 
device characteristics, k-means is able to increase the 
distance of weaker members from nearest neighbors 
but is not able to eliminate the negative silhouettes. 

Device Index 



 
 
 
Figure 8. Cluster characteristics for all 30-test 
vectors using k-means method 

a) vectors;  b)cluster number; c)number of 
devices in the cluster. 

 
Figure 9. Silhouette plot for clusters from lot 1 

using k-means clustering. 

 
Figure 10. Silhouette plot for clusters obtained 
after binning devices from lots 2,3 and 4 using 

k-means Clustering. 

 
 

Figure 11. Silhouette plot for clusters obtained 
from clustering all the lots together using k-

means clustering. 
 

Binning of lots 2, 3 and 4 based on cluster 
characteristics obtained from phase one applied on lot 
1 proved effective in the case of k-means too.  
Surprisingly, even after compromising on the actual k-
means algorithm during the binning phase, the 
technique was able to bin the other lots efficiently.   
The clusters generated by k-means had 23 weaker 
members from two clusters. The result from the 
binning phase for k-means is presented in figure 10.  
Although the result of binning was good, the effect of 
compromise in binning phase shows up in the number 
of weaker members introduced in that phase.  From the 
first, there were 23 weak members but after binning all 
the other lots, 22 weaker members were introduced. 
The results of binning are compared with the 
traditional technique using k-means in figure 11. 
 
4.5. Discussion 

 
The term uncertainty factor is introduced in this 

section and is defined as the ratio of number of weaker 
members in the final clustering solution to the total 
number of devices being clustered (or binned).  

The results for the binning process using two 
clustering methods are summarized in Table 1.  The 
number of devices in each cluster is unique for each 
method used in cluster pre-forming phase. Cluster 1 is 
largest with same characteristics for both the 
approaches. All the 390 devices in cluster 1 for K-
means method are subset of 529 devices obtained with 
hierarchical approach. Similar observation can be made 
for other clusters from pre-forming phase.  Difference 
in distribution is due to the random selection of initial 
seed point in case of K-means. Moreover, since the 
characteristics of devices obtained using each method  
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Table 1.  Statistics for the proposed technique 

1 2 3 4 5
Pre-
forming  
Lot 1

627 529 37 46 14 1 31 4.90% 26 sec O(N2log2N)  
[5]

Binning 
lots 2,3,4

2238 2193 7 35 3 0 1 0.04% 4 sec O(N)

Pre-
forming  
Lot 1

627 390 123 32 20 62 23 3.60% 0.69 sec
O(IKN)     

[25]

Binning 
lots 2,3,4

2238 2133 68 8 4 25 22 0.98% 4 sec O(N)

# of Weak 
Members

Uncert-
ainty 

  Time for 
binning 

Complexity
CLUSTER

Hierarchical 
Method

K-means 
Method

# of 
Devices

PhasesMethod

 
also differ, the characterizations obtained for final bins 
will also differ for the two algorithms.  The same 
observation can be made for the bins obtained after all 
the devices from lots 2, 3 and 4. The number of weak 
members for hierarchical phase was 31 making the 
initial uncertainty 4.9% which seems to be a high 
value.  Before the binning process, if these weak 
members are not screened as explained in section 4.3, 
the other lots add one weaker member during the 
binning process making the uncertainty 0.04% for lots 
2,3 and 4. 

 Another parameter of interest is the time it takes for 
the whole process.  For the cluster pre-forming phase, 
hierarchical clustering takes 26 seconds as compared to 
0.69 seconds in k-means. This can be mainly attributed 
to the complexity of the process (last column, table 1). 
Hierarchical clustering has more than quadratic 
complexity while K-means has linear complexity 
depending mainly on I number of iterations to achieve 
K groups from N data points. However, the cluster pre-
forming phase is performed offline and it will not 
affect the binning process, which is implemented on 
the production line. Moreover, the binning process for 
both the methods take same time (4.0 seconds total, or 
approximately 2mseconds per DUT) due to same order 
of complexity O (N). The computation time was 
measured on an UltraSPARC processor with clock 
speed of 400 MHz. 

  Neither of the two algorithms was found superior 
for the present implementation.  The choice of 
algorithm can be based on spread of characteristics in 
the lots examined for the first phase.  In addition, 
computation complexities can play important role in 
this decision.  Hierarchical clustering algorithm is 
bound to have increased complexities if the data set is 
very large.  In contrast, the K-means algorithms’ 
complexity depends on number of groups being formed 
and the size of data set. If the test data set has a more 
variability in characteristics of devices, K-means 

algorithm can be more complex compared to 
hierarchical method. For the present case, based on 
uncertainty and characteristics obtained hierarchical 
method provides better solution as compared to K-
means.  As far as the binning process is concerned, the 
number of iterations is same for both implementations.   
 
5. Conclusion 
 

Clustering-based methods can use a number of 
analog measurements to classify ICs into bins with 
different attributes. The bins can correspond not only 
to acceptable/bad classification, but also to devices 
suitable for a specific market segment. Because faulty 
IDDQ values can be comparable to normal values, 
multiple measurements need to be considered to 
enhance resolution.  Statistical clustering is a powerful 
method for assigning ICs to specific bins. However 
clustering can be computation intensive if a large 
number of devices need to be binned. Here a technique 
is proposed that identifies clusters using off-line 
computation. Once characteristics of the clusters 
are recognized, a device coming off the production can 
be quickly assigned to a specific bin. The feasibility of 
such an implementation was studied on industrial test 
data. Results show that the proposed technique will 
require only minimal computation time per device and 
thus it can be used in a production line environment. 
We have compared two clustering algorithms in terms 
of devices that result in uncertainty. 

Even though we have used IDDQ for the devices, it 
is possible to extend the method for other analog 
measurements that may be available. It is possible to 
minimize the impact of vector-to-vector or lot-to-lot 
variability by suitably normalizing the data. Further 
research is needed to evaluate the impact of such 
normalization. 
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