Reliability Allocation

Introduction

Many systems are implemented by using a set of
interconnected subsystems. While the architecture
of the overall system may often be fixed, individ-
ual subsystems may be implemented differently. A
designer needs to either achieve the target reliabil-
ity while minimizing the total cost, or maximize
the reliability while using only the available budget.
Intuitively, some of the lowest-reliability components
may need special attention to raise the overall relia-
bility level. Such an optimization problem may arise
while designing a complex software or a computer
system. Such problems also arise in mechanical or
electrical systems. A number of studies since 1960
have examined such problems [1].

In a nonredundant system, all the subsystems are
essential. Often, however, an individual subsystem
can be made more reliable by using a more costly
implementation. This additional cost may represent
wider columns in a building or more thorough
testing of software. In redundant implementations,
higher reliability can sometimes be achieved by using
several copies of a subsystem, such that the system
forms a parallel or k-out-of-n configuration.

The next section considers the problem formu-
lation, followed by approaches used for setting up
an optimization problem. As an example, software
reliability allocation is examined in detail with two
numerical illustrations. The last section considers reli-
ability allocation in complex systems.

Problem Formulation

We assume that a system has been designed at a
higher level as an assembly of appropriately con-
nected subsystems. In general, the functionality of
each subsystem can be unique; however, there can be
several choices for many of the subsystems provid-
ing the same functionality, but differently reliability
levels.

Here we consider the problem formulation for a
common and widely applicable case. Let there be
n subsystems SS;,i = 1, ..., n, each with reliability
R; and cost C;. Let the cost C; be a function of the
reliability given by f;(R;), it is referred to as the cost

function below. Let Cs and R represent the total
system cost and the overall reliability and Rst be
the specified target reliability. If all the subsystems
are essential to the system and if their failures are
statistically independent, the system can be modeled
as a series system. The cost minimization problem
can be stated as follows:

Minimize C = i C;, = i fi(R) 1)

i=1 i=1
Subject to

RST = Rs

n n
i.e. Rsy < [[R since Rs = [[R;)

i=1 i=1

Note that equation (1) assumes that the cost of
interconnecting the subsystems is negligible. An
alternative problem would be to maximize Ry while
keeping C; less than or equal to the allocated cost
budget.

The ith subsystem SS; may have several imple-
mentation choices with different reliability values:

1. By extending a continuous attribute (for example,
diameter of a column in building or time spent
for software testing) the subsystem can be made
more reliable.

2. Different vendors may offer their own implemen-
tations of SS; at different costs.

3. It may be possible to use multiple copies of
SS; (for example, double wheels of a truck)
to achieve higher reliability. Often the number
of copies is constrained between a minimum
(often one) and a maximum number because of
implementation issues.

Note that in the first case, both the cost and the
reliability can be varied continuously, whereas in the
other two cases, the choices are discrete. In the first
case, we can define a continuous cost function. In
the second case too, the market forces may impose a
cost function. In the third case, the subsystem may be
modeled as a parallel or k-out-of-n system for relia-
bility evaluation, provided the failures are statistically
independent. A number of publications on reliabil-
ity allocation consider only the third case, where the
optimization problem becomes an integer optimiza-
tion problem. It becomes a 0—1 optimization problem

2 Reliability Allocation

when choices are discrete and a component from a
given list of candidates is either used or not used [2].

Approaches for Problem Setup

It is reasonable to assume that the cost function f;
would satisfy the following three conditions [3]:

1. f; is a positive function

2. f; is nondecreasing

3. f; increases at a higher rate for higher values
of R,’.

The third condition suggests that it can be very
expensive to achieve the reliability value of one. In
fact, for software, it has to been shown that under
some assumptions, it is infeasible to achieve ultrahigh
reliability [4].

In some cases, the cost function can be derived
from basic considerations, as we will do below for
software reliability. In other cases, it may be derived
empirically by compiling data for different choices.
The cost function is often stated in terms of the
reliability, for example, the cost function proposed
by Mettas [3] is given by

Ri _Ri,min
Ci(R;, pis Rimins Rimax)=exp | (1—-pi) -——
Ri,max_Ri

3

where R; min and R; g, are the minimum and max-
imum values of R; and p; is parameter ranging
between zero and one that represents the relative dif-
ficulty of increasing a component’s reliability. The
cost function can also be given in terms of the fail-
ure rate as illustrated below for software reliability
allocation.

A useful transformation of equation (2) can be
obtained by taking the logarithms of both sides of
the equation [5-7].

In(Rst) <) In(R)) “)

i=1

The transformation in equation (4) can sometimes
reduce the problem to a linear optimization problem.
The term In(R;) can also have a well-defined physical
significance, in some cases, as the failure rate. When
the failure rate of a subsystem SS; is constant, its

reliability is given by an exponential relationship
R;(t) = exp(—A;t), the system failure rate is given
by the summation of the subsystem failure rates and
hence equation (4) can be restated as

AsT > Z)\,’ @)
i=1

The failure rate itself is a major reliability
attribute. In some cases, such as in software relia-
bility engineering, it is the failure rate that is often
specified [8, 9]. The cost function of a subsystem can
also be given in terms of its failure rate. If the cost
C; is given by the function f;(A;), equation (1) can
be restated as

Minimize Cs = ZC,- = Z fi(Ai) (6)
i—1 i=1

For example, let us consider software reliability.
When a software is tested, defects in it are found
and removed by debugging. A program tested more
thoroughly will have fewer bugs and hence higher
reliability. Several models relating software reliabil-
ity growth, with the time spent in testing, have been
proposed and validated. These are termed software
reliability growth models (SRGMs). For the popular
exponential software reliability growth model [8—10],
the failure rate as a function of testing time d is
given by

3i(d) = ho; exp(—pid) @)

where A9 and B; are the SRGM parameters. If we
assume that the cost is dominated by the testing time,
the cost is given by the following function, which
satisfies the three conditions mentioned above.

dG) = Lo (20 8
(1)_En<)_i> ()

Reliability Allocation Approaches for
Basic Series and Parallel Systems

The reliability allocation problem for two basic
reliability structures series and parallel can be solved
by linearizing the constraints [1, 2, 7]. In a series
system, the constraint is given in equation (2) above,
which can be linearized by rewriting it as

In(Rst) < Y In(R;) ©)

i=1

Reliability Allocation 3

which may then be solved relatively easily. An
example is given below for software reliability
allocation.

In a parallel system, functionally identical subsys-
tems are configured such that correct operation of
at least one of them assures a correctly functioning
system. It is assumed that any overhead in implement-
ing such a system is negligible. In real systems, the
overhead involved will result in a lower level of reli-
ability. In a number of studies, the problem assumes
that the reliability of a subsystem can be increased
by using a functionally identical component in par-
allel [2, 7]. For parallel systems, the constraint is
given by

n

Rao<1-[Ja-R) (10)

i=1

The constraint can be linearized by using loga-
rithms of the complements of reliability. Therefore,
equation (10) can be rewritten as

In(1 = Rr) =) |In(1 = R) (11)

i=1

Elegbede ef al. have recently shown [7] that if
the cost function satisfies the three properties given
above, the cost is optimal if all the parallel com-
ponents have the same cost. For software, computer
hardware, and mechanical systems, the number of
discrete parallel component is likely to be very small.

Reliability Allocation for Software Systems

As a detailed example, we examine the problem of
software reliability allocation [6]. Typically, a soft-
ware consists of sequentially executed blocks, such
that only one is under execution at a time. Each block
can be independently tested and debugged to reduce
the failure rate below a target value. In some cases,
the reliability of a block can be further increased
by replication. For replication to be effective, each
replicated version must be developed independently
such that the failures are relatively independent. The
impact of replication can be evaluated by assuming
statistical independence. However, it has been shown
that sometimes the statistical correlation can be sig-
nificant, requiring more complex analysis.

Here, in this example we consider the common
case, a nonredundant implementation of software,

divided into n sequential blocks [6]. Let us assume
that a block i is under execution for a fraction x;
of the time where ¥x; = 1 [5]. Then the reliability
allocation problem can be written as

"1 Aoi
Minimize C = & In (A—°> (12)
i= Pt J

1

Subject to Ast < in)\i (13)

i=1

Solution: Let us solve the problem posed by equa-
tions (12) and (13) by using the Lagrange multiplier
approach by finding the minimum of

Fhi, oo os2) =C+0(+ -+ 2y) —Ast (14)

where 6 is the Lagrange multiplier. The necessary
conditions for the minimum to exist are (a) the
partial derivatives of the function F are equal to
zero, (b) 6 > 0, and (c) x; A1 + X200 + - - - + x4, =
Ast [6]. Equating the partial derivatives to zero and
using the third condition, the solutions for the optimal
failure rates are found as follows:

AST
x_ Bix1 Bixi
M= =T e A=y
Z ﬁ ,32)62 ﬁnxn
i=1 Bi
(15)

The testing times of the individual modules are
given by equation (12). The optimal values of d;
and d;,i # 1 are given by

di=—1In and
Bi AsT
1 AioBix;

d,-:—ln(°’“> (16)
Bi A Bix

Note that d; is positive if A; < A;o. The testing
time for a block must be nonnegative. If any of
the testing times in equation (16) is negative, the
optimization problem must be solved iteratively [6].

In software reliability engineering, the assump-
tions involved in formulation of the exponential
model imply that the parameter §; is inversely pro-
portional to the software size [8, 11], when measured
in terms of the lines of code. The value of x; can be

4 Reliability Allocation

Table 1 Input data and optimal values for Example 1

Block Bl B2 B3 B4 B5

Bi 7x1073 35x1073 2333x10°% 7x1074 3.5 x 1074
Aio 0.14 0.14 0.14 0.175 0.21

X 0.028 0.056 0.083 0.278 0.556
Optimal A; 0.06 0.06 0.06 0.06 0.06
Optimal d; 121.043 242.085 363.128 1.529 x 10* 3.579 x 10°

reasonably assumed to be proportional to the code
size. The values of A; and A;p do not depend on
size but depend on the initial defect densities [11].
Therefore, if the exponential model indeed holds, the
equation (15) states that the optimal values of the
post-test failure rates Aq, ..., A, are equal. In addi-
tion, if all the initial defect densities are also equal
for all the blocks, then the optimal test times for each
module is proportional to its size.

Example 1 A software system uses five functional
blocks B1-B5. We construct this example assuming
sizes 1, 2, 3, 10, and 20 KLOC (thousand lines of
code) respectively, and the initial defect densities of
20, 20, 20, 25, and 30 defects per KLOC respec-
tively. Let us assume that measured parameter values
are given in the top three rows, which are the inputs
to the optimization problem. The solution obtained
using equations (15) and (16) are given in the two
bottom rows. Let us now minimize the test cost such
that the overall failure rate is less than or equal to
0.06 per unit time. Here the time units can be hours
of testing time or hours of CPU time used for testing.
(See Table 1).

Note that the optimal values of X; for the five
modules are equal, even though they start with
different initial values. This requires a substantial part
of the test effort allocated to largest blocks. The total
cost in terms of testing is 5.835 x 103 h.

Example 2 This is identical to the previous exam-
ple with one difference, the numbers in the second

row for X;o are obtained assuming all five modules
have the same defect density value of 20 per KLOC.
(See Table 2).

We note that for this example, the optimal testing
time is exactly proportional to the software size, block
Bjs is tested for 20 times the time used for B;. The
final failure rates are identical for the five blocks.

The above discussion suggests that some prelim-
inary rules may be used for obtaining initial appor-
tionments. Some apportionment rules have been sug-
gested in the literature [5].

Equal reliability apportionment For example,
one can test a set of software blocks, such that at
the end they all individually have the failure rate
equal to the target failure rate for the system.
Complexity-based apportionment For exam-
ple, the software size itself is a complexity met-
ric. Therefore, the available test time can be
apportioned in proportion to the software size.
Impact-based apportionment A block that is
executed more frequently, or is more critical
in terms of failures, should be assigned more
resources.

Reliability Allocation for Complex Systems

In practice, many cases can be complex and may
require an iterative approach [1, 2, 7, 12]. Such an
approach is also needed if the objective function has
multiple objectives and includes both the total cost

Table 2 Input data and optimal values for Example 2

Block Bl Bz B3 B4 B5

B: 7x107% 35x107% 2333x103 7x10% 35x10™*
Aio 0.14 0.14 0.14 0.14 0.14

X; 0.028 0.056 0.083 0.278 0.556
Optimal A; 0.06 0.06 0.06 0.06 0.06
Optimal d; 121.043 242.085 363.128 121 x 103 2.421 x 103

Reliability Allocation 5

and the system reliability [1]. These steps are based
on [12]:

1. Design the system using functional subsystems.
Perform an initial apportionment of cost or relia-
bility attributes based on suitable apportionment
rules or preliminary computation.

3. Predict system reliability.

4. Determine if reallocation is feasible and will
enhance the objective function. If so, perform
reallocation.

5. Repeat until optimality is achieved.

6. See if this meets the objectives. If not, consider
returning to step 1 and revising the design.

7. Finalize the design with recommended reliability
allocation and the cost projections.

The optimization methods used in steps 2—5 above
can be classified into three approaches [1].

1. Exact methods When the problem is not large,
exact methods can be desirable. In general,
the problem can be a nonlinear optimization
problem. In a few cases, the problem can be
transformed into a linear problem, as shown in
the example above.

2. Heuristics-based methods Several heuristics for
reliability allocation have been developed. Many
of them are based on identifying the variable
to which the solution is most sensitive and
incrementing its value.

3. Metaheuristic algorithms These algorithms are
based on artificial reasoning. The best known of
them are genetic algorithms, simulated anneal-
ing, and tabu-search. These algorithms can be
useful when the search space is large and approx-
imate results are sought.

Some general purpose [13] and special purpose
[6] software tools have been developed that can
simplify setting up and solving the optimal allocation
problem. The reliability allocation problem can also
be formulated to address other reliability attributes
like availability [14] or maintainability.

References

[1] Kuo, W. & Prasad, V.R. (2000). An annotated overview
of system-reliability optimization, /EEE Transactions on
Reliability 49, 176—187.

[2] Majety, S.R.V., Dawande, M. & Rajgopal, J. (1999).
Optimal reliability allocation with discrete cost-
reliability data for components, Operations Research 47,
899-906.

[3] Mettas, A. (2000). Reliability allocation and optimiza-
tion for complex systems, in Proceedings Annual Reli-
ability and Maintainability Symposium, Los Angeles,
January 2000, pp. 216-221.

[4] Butler, R'W. & Finelli, G.B. (1993). The infeasibility
of quantifying the reliability of life-critical real-time
software, IEEE Transactions on Software Engineering
19, 3-12.

[5] Lakey, P.B. & Neufelder, A.M. (1996). System and Soft-
ware Reliability Assurance Notebook, Rome Laboratory,
Rome, pp. 6.1-6.24.

[6] Lyu, M.R., Rangarajan, S. & van Moorsel, A.P.A.
(2002). Optimal allocation of test resources for software
reliability growth modeling in software development,
IEEE Transactions on Reliability 51, 183-192.

[7]1 Elegbede, A.O.C., Chengbin, C., Adjallah, KH. &
Yalaoui, F. (2003). Reliability allocation through cost
minimization, IEEE Transactions on Reliability 52,
106-111.

[8] Musa, J.D., Iannini, A. & Okumoto, K. (1897). Soft-
ware Reliability, Measurement, Prediction, Application,
McGraw-Hill.

[91 Lyu, M.R. (ed) (1995). Handbook of Software Reliability
Engineering, McGraw-Hill.

[10] Goel, A.L. & Okumoto, K. (1979). Time-dependent
error detection rate model for software and other perfor-
mance measures, [EEE Transactions on Reliability 28,
206-211.

[11] Malaiya, Y.K. & Denton, J. (1997). What do the soft-
ware reliability growth model parameters represent? in
International Symposium on Software Reliability Engi-
neering, Albuquerque, pp. 124-135.

[12] NASA Document. (2004). Reliability allocation, Oct
1, 2004, http://www.foia.msfc.nasa.gov/docs/NAS8-00
179/S&MAOI/R-Reliability/QD-R-008.pdf.

[13] ReliaSoft. (2003). Reliability importance and opti-
mized reliability allocation (analytical), http://www.wei-
bull.com/SystemRelWeb/blocksimtheory.htm.

[14] Gurov, S.V., Utkin, L.V. & Shubinsky, I.B. (1995). Opti-
mal reliability allocation of redundant units and repair
facilities by arbitrary failure and repair distributions,
Microelectronics Reliability 35(12), 1451-1460.

Related Articles

k-out-of-n Systems; Parallel, Series, and Ser-
ies—Parallel Systems.

YASHWANT K. MALAIYA

